Soil Respiration in Anthropogenic Disturbed Ecosystems Compared to Deciduous Forests in the Urban Industrial Area

https://doi.org/10.24017/science.2024.2.5

Abstract views: 0 / PDF downloads: 0

Authors

  • Jawdat Bakr Technical Institute of Bakrajo, Sulaimani Polytechnic University, Sulaymaniyah, Iraq| Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland https://orcid.org/0000-0002-2539-3889

Abstract

In urban industrial area, mining activity directly affects the dynamic of carbon, and consequently, the release of carbon dioxide (CO2) into the atmosphere. The main objective of this research is to study the impact of most important abiotic environmental factors on soil respiration in post-coalmine ecosystems. The moisture and temperature of the soil, along with CO2 outflow from the soil, were measured over three consecutive seasons, using 92 samples from coalmine heaps and 10 samples from deciduous forests in the same urban industrial region. Based on a survey of 396 species, a cluster analysis distinguished all deciduous and 22 forest plots grown on coalmine heaps from herbaceous plots from same coalmine heaps. The lowest soil respiration rate (0.62 mg CO2 per hour per square meter) was recorded in the herbaceous vegetation class on coalmine heaps, compared to (0.76 mg and 0.96 mg) from coalmine-heap forests and deciduous forests, respectively. Species richness and diversity positively affected soil respiration in heap herbaceous plots, though this effect was less pronounced in forests grown on coalmine heaps and in deciduous mixed forests. Unlike soil water content, soil temperature negatively correlated with soil respiration on coalmine heaps, diverging from the well-studied positive impact of soil temperature and respiration in deciduous mixed forests. Our spatial and temporal analyses emphasize that the water content of the substrate is the most significant abiotic element that affects the soil respiration on coalmine heaps positively during early vegetation succession.

Keywords:

Vegetation succession, coalmine heaps, abiotic factors, taxonom-ic diversity, functional diversity

References

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Tollerdell, “Accelaration of global warming due to carbon-cycle feedback in a coupled climate model,” Nature, vol. 408, no. 6813, p. 750, 2000, doi: 10.1038/35047138. DOI: https://doi.org/10.1038/35047138

J. W. Raich and S. Potter, “From Soils,” Global Biogeochem. Cycles, vol. 9, no. 1, pp. 23–36, 1995. DOI: https://doi.org/10.1029/94GB02723

R. Valentini et al., “Respiration as the main determinant of carbon balance in European forests,” Nature, vol. 404, no. 6780, pp. 861–865, 2000, doi: 10.1038/35009084. DOI: https://doi.org/10.1038/35009084

W. H. Van Der Putten, M. Macel, and M. E. Visser, “Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels,” Philos. Trans. R. Soc. B Biol. Sci., vol. 365, no. 1549, pp. 2025–2034, 2010, doi: 10.1098/rstb.2010.0037. DOI: https://doi.org/10.1098/rstb.2010.0037

S. Naeem, “Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments,” Ecology, vol. 83, no. 10, p. 2925, 2002, doi: 10.2307/3072027. DOI: https://doi.org/10.2307/3072027

J. D. M. Wagner, J. E. Cole, J. W. Beck, P. J. Patchett, G. M. Henderson, and H. R. Barnett, “Moisture variability in the southwestern United States linked to abrupt glacial climate change,” Nat. Geosci., vol. 3, no. 2, pp. 110–113, 2010, doi: 10.1038/ngeo707. DOI: https://doi.org/10.1038/ngeo707

IPCC, “Climate Change 2001 Synthesis Report,” IPCC. Accessed: Aug. 18, 2004. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_TAR_full_report.pdf.

IPCC, “Climate Change 2014 Synthesis Report,” IPCC. Accessed: Aug. 18, 2024. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.

D. S. Schimel et al., “Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils,” Global Biogeochem. Cycles, vol. 8, no. 3, pp. 279–293, 1994, [Online]. Available: papers2://publication/uuid/24BF4BF5-C766-4B48-8A93-62ABD97CCB19. DOI: https://doi.org/10.1029/94GB00993

M. L. Goulden, J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy, “Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy,” Glob. Chang. Biol., vol. 2, no. 3, pp. 169–182, 1996, doi: 10.1111/j.1365-2486.1996.tb00070.x. DOI: https://doi.org/10.1111/j.1365-2486.1996.tb00070.x

E. A. Davidson and M. N. Holbrook, “Is Temporal Variation of Soil Respiration Linked to the Phenology of Photosynthesis?,” in Phenology of Ecosystem Processes, (Eds)., Asko Noormets, Ed., New York: Springer, New York, NY, 2009, pp. 187–199. doi: https://doi.org/10.1007/978-1-4419-0026-5_8. DOI: https://doi.org/10.1007/978-1-4419-0026-5_8

J. Gliński and W. Stępniewski, Soil aeration and its role for plants. Boca Raton.: CRC Press, 2018. doi: 10.1201/9781351076685. DOI: https://doi.org/10.1201/9781351076685

J. Bakr et al., “Taxonomic and functional diversity along successional stages on post-coalmine spoil heaps,” Front. Environ. Sci., vol. 12, 2024, doi: 10.3389/fenvs.2024.1412631. DOI: https://doi.org/10.3389/fenvs.2024.1412631

L. W. Aarssen, “High productivity in grassland ecosystems: effected by species diversity or productive species?,” Oikos, vol. 80, no. 1, p. 183, 1997, doi: 10.2307/3546531. DOI: https://doi.org/10.2307/3546531

M. A. Huston, “Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity,” Oecologia, vol. 110, no. 4. pp. 449–460, 1997. doi: 10.1007/s004420050180. DOI: https://doi.org/10.1007/s004420050180

J. Bakr et al., “Plant species and functional diversity of novel forests growing on coal mine heaps compared with managed coniferous and deciduous mixed forests,” Forests, vol. 15, no. 4, 2024, doi: 10.3390/f15040730. DOI: https://doi.org/10.3390/f15040730

T. J. Aslam, T. G. Benton, U. N. Nielsen, and S. N. Johnson, “Impacts of eucalypt plantation management on soil faunal communities and nutrient bioavailability: trading function for dependence?,” Biol. Fertil. Soils, vol. 51, no. 5, pp. 637–644, 2015, doi: 10.1007/s00374-015-1003-6. DOI: https://doi.org/10.1007/s00374-015-1003-6

F. T. De Vries et al., “Soil food web properties explain ecosystem services across European land use systems,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 35, pp. 14296–14301, 2013, doi: 10.1073/pnas.1305198110. DOI: https://doi.org/10.1073/pnas.1305198110

J. Zhao et al., “Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations,” For. Ecol. Manage., vol. 310, pp. 80–86, 2013, doi: 10.1016/j.foreco.2013.08.013. DOI: https://doi.org/10.1016/j.foreco.2013.08.013

J. Szczepańska, “Zwałowiska odpadów górnictwa węgla kamiennego jako ogniska zanieczyszczeń środowiska wodnego,” Kraków, 1987.

G. Kosmala, “Geographical characteristics of Silesia,” Acad. Phys. Educ. Katowice, pp. 19–39, 2013.

J. M. Cabala, S. R. Cmiel, and A. F. Idziak, “Environmental impact of mining activity in the upper Silesian coal basin (Poland),” Geol. BELGICA, vol. 7, no. 3–4, pp. 225–229, 2004.

J. Bakr, A. Kompała-b, W. Bierza, D. Chmura, and A. Hutniczak, “Borrow pit disposal of coal mining byproducts improves soil physicochemical properties and vegetation succession,” Agronomy, vol. 14, no. 1638, pp. 1–18, 2024, doi: 10.3390/agronomy14081638. DOI: https://doi.org/10.3390/agronomy14081638

D. Zelený, “Analysis of community ecology data in R.” Accessed: May 22, 2024. [Online]. Available: https://www.davidzeleny.net/anadat-r/doku.php/en:sampling_design

G. Woźniak et al., “Use of remote sensing to track postindustrial vegetation development,” L. Degrad. Dev., vol. 32, no. 3, pp. 1426–1439, 2021, doi: 10.1002/ldr.3789. DOI: https://doi.org/10.1002/ldr.3789

A. Kompała-Bąba, W. Bierza, E. Sierka, A. Błońska, L. Besenyei, and G. Woźniak, “The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps,” Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-021-84673-0. DOI: https://doi.org/10.1038/s41598-021-84673-0

Z. Mirek, H. Piękoś-Mirkowa, A. . Zając, and M. Zając, Vascular Plants of Poland. An annotated checklist [Rośliny naczyniowe Polski. Adnotowany wykaz gatunków], 3rd ed. Krakow: Institute of Botany, Polish Academy of Sciences, 2020.

A. Kompała-Bąba et al., “Vegetation diversity on coal mine spoil heaps – how important is the texture of the soil substrate?,” Biologia (Bratisl)., vol. 74, no. 4, pp. 419–436, 2019, doi: 10.2478/s11756-019-00218-x. DOI: https://doi.org/10.2478/s11756-019-00218-x

P. M. Rutherford, W. . McGill, J. M. Arocena, and C. T. Figueiredo, “Total nitrogen,” in Soil Sampling and Methods of Analysis, Eds., M. R. Carter and E. G. Gregoric, Eds., FL, USA: CRC Press: Boca Raton, 2006, pp. 267–278.

B. Hristov, E. Filcheva, and P. Ivanov, “Organic matter content and composition of soils with stagnic properties from Bulgaria,” Bulg. J. Soil Sci., pp. 25–32, 2016, doi: 10.5281/zenodo.2579058.

D. López-Marcos et al., “Soil carbon stocks and exchangeable cations in monospecific and mixed pine forests,” European Journal of Forest Research, vol. 137, no. 6. pp. 831–847, 2018. doi: 10.1007/s10342-018-1143-y. DOI: https://doi.org/10.1007/s10342-018-1143-y

A. Mehlich, “Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant,” Commun. Soil Sci. Plant Anal., vol. 15, no. 12, pp. 1409–1416, 1984, doi: 10.1080/00103628409367568. DOI: https://doi.org/10.1080/00103628409367568

N. Ziadi and T. S. Tran, “Mehlich 3-extractable elements,” in Soil Sampling and Methods of Analysis, Eds., M. R. Carter and E. G. Gregorich, Eds., FL, UAS: CRC Press, Boca Raton, 2008, pp. 81–88. DOI: https://doi.org/10.1201/9781420005271.ch7

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 1987, doi: 10.1016/0377-0427(87)90125-7. DOI: https://doi.org/10.1016/0377-0427(87)90125-7

P. Royston, “Remark AS R94: A Remark on Algorithm AS 181: The W-test for Normality,” Appl. Stat., vol. 44, no. 4, p. 547, 1995, doi: 10.2307/2986146. DOI: https://doi.org/10.2307/2986146

R. E. Wheeler, “Permutation tests for linear models in R,” R Doc., pp. 1–36, 2010, [Online]. Available: papers3://publication/uuid/6B7EDCFC-D1A6-4EED-9923-443041BD089E.

E. Laliberté, P. Legendre, and B. Shipley, “Measuring functional diversity (fd) from multiple traits, and other tools for functional ecology R package version 1.0-12.3.” Accessed: May 22, 2024. [Online]. Available: https://www.mdpi.com/1999-4907/15/4/730#B61-forests-15-00730

D. P. Faith, P. R. Minchin, and L. Belbin, “Compositional dissimilarity as a robust measure of ecological distance,” Vegetatio, vol. 69, no. 1–3, pp. 57–68, 1987, doi: 10.1007/BF00038687. DOI: https://doi.org/10.1007/BF00038687

R. A. Becker, J. M. Chambers, and A. R. Wilks, “Wadsworth & Brooks/Cole,” in The New S Language, 1998.

A. Kompała-Bąba et al., “Taxonomic diversity and selection of functional traits in novel ecosystems developing on coal-mine sedimentation pools,” Sustain., vol. 15, no. 3, pp. 1–19, 2023, doi: 10.3390/su15032094. DOI: https://doi.org/10.3390/su15032094

G. Woźniak et al., “The diversity and plant species composition of the spontaneous vegetation on coal mine spoil heaps in relation to the area size,” Min. Mach., vol. 41, no. 1, pp. 68–84, 2023, doi: 10.32056/KOMAG2023.1.7.

A. Błońska et al., “Wetland vegetation of novel ecosystems as the biodiversity hotspots of the urban-industrial landscape,” J. Ecol. Eng., vol. 25, no. 7, pp. 317–331, 2024, doi: 10.12911/22998993/188902. DOI: https://doi.org/10.12911/22998993/188902

A. Błońska et al., “Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas,” J. Ecol. Eng., vol. 20, no. 2, pp. 209–217, 2019, doi: 10.12911/22998993/93870. DOI: https://doi.org/10.12911/22998993/93870

K. Řehounková, K. Lencová, and K. Prach, “Spontaneous establishment of woodland during succession in a variety of central European disturbed sites,” Ecol. Eng., vol. 111, no. November 2016, pp. 94–99, 2018, doi: 10.1016/j.ecoleng.2017.11.016. DOI: https://doi.org/10.1016/j.ecoleng.2017.11.016

D. Sheil and D. F. R. P. Burslem, “Disturbing hypotheses in tropical forests,” Trends Ecol. Evol., vol. 18, no. 1, pp. 18–26, 2003, doi: 10.1016/S0169-5347(02)00005-8. DOI: https://doi.org/10.1016/S0169-5347(02)00005-8

S. Díaz and M. Cabido, “Vive la différence: Plant functional diversity matters to ecosystem processes,” Trends in Ecology and Evolution, vol. 16, no. 11. pp. 646–655, 2001. doi: 10.1016/S0169-5347(01)02283-2. DOI: https://doi.org/10.1016/S0169-5347(01)02283-2

D. A. Heemsbergen, M. P. Berg, M. Loreau, J. R. Van Hal, J. H. Faber, and H. A. Verhoef, “Biodiversity effects on soil processes explained by interspecific functional dissimilarity,” Science (80-. )., vol. 306, no. 5698, pp. 1019–1020, 2004, doi: 10.1126/science.1101865. DOI: https://doi.org/10.1126/science.1101865

F. D. Hulot, G. Lacroix, F. Lescher-Moutoué, and M. Loreau, “Functional diversity governs ecosystem response to nutrient enrichment,” Nature, vol. 405, no. 6784, pp. 340–344, 2000, doi: 10.1038/35012591. DOI: https://doi.org/10.1038/35012591

O. L. Petchey and K. J. Gaston, “Functional diversity: Back to basics and looking forward,” Ecol. Lett., vol. 9, no. 6, pp. 741–758, 2006, doi: 10.1111/j.1461-0248.2006.00924.x. DOI: https://doi.org/10.1111/j.1461-0248.2006.00924.x

D. Tilman, D. Wedin, and J. Knops, “Productivity and sustainability influenced by biodiversity in grassland ecosystems,” Nature, vol. 379, no. 6567, pp. 718–720, 1996, doi: 10.1038/379718a0. DOI: https://doi.org/10.1038/379718a0

D. U. Hooper et al., “Effects of biodiversity on ecosystem functioning: A consensus of current knowledge,” Ecol. Monogr., vol. 75, no. 1, pp. 3–35, 2005, doi: 10.1890/04-0922. DOI: https://doi.org/10.1890/04-0922

J. G. Alday, Y. Pallavicini, R. H. Marrs, and C. Martínez-Ruiz, “Functional groups and dispersal strategies as guides for predicting vegetation dynamics on reclaimed mines,” Plant Ecol., vol. 212, no. 11, pp. 1759–1775, 2011, doi: 10.1007/s11258-011-9947-6. DOI: https://doi.org/10.1007/s11258-011-9947-6

W. Bierza et al., “Plant diversity and species composition in relation to soil enzymatic activity in the novel ecosystems of urban–industrial landscapes,” Sustainability (Switzerland), vol. 15, no. 9. 2023. doi: 10.3390/su15097284. DOI: https://doi.org/10.3390/su15097284

J. Tang, D. D. Baldocchi, Y. Qi, and L. Xu, “Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors,” Agric. For. Meteorol., vol. 118, no. 3–4, pp. 207–220, 2003, doi: 10.1016/S0168-1923(03)00112-6. DOI: https://doi.org/10.1016/S0168-1923(03)00112-6

B. Kraft et al., “The environmental controls that govern the end product of bacterial nitrate respiration,” Science, vol. 345, no. 6197, pp. 676–679, 2014, doi: 10.1126/science.1254070. DOI: https://doi.org/10.1126/science.1254070

V. L. Shannon, E. I. Vanguelova, J. I. L. Morison, L. J. Shaw, and J. M. Clark, “The contribution of deadwood to soil carbon dynamics in contrasting temperate forest ecosystems,” Eur. J. For. Res., vol. 141, no. 2, pp. 241–252, 2022, doi: 10.1007/s10342-021-01435-3. DOI: https://doi.org/10.1007/s10342-021-01435-3

A. Korrensalo et al., “Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration,” Biogeosciences, vol. 14, no. 2, pp. 257–269, 2017, doi: 10.5194/bg-14-257-2017. DOI: https://doi.org/10.5194/bg-14-257-2017

O. Rahmonov, R. Krzysztofik, D. Środek, and J. Smolarek-Lach, “Vegetation-and environmental changes on non-reclaimed spoil heaps in Southern Poland,” Biology (Basel)., vol. 9, no. 7, pp. 1–22, 2020, doi: 10.3390/biology9070164. DOI: https://doi.org/10.3390/biology9070164

M. G. Ryan, “Editorial: Temperature and tree growth,” Tree Physiology, vol. 30, no. 6. pp. 667–668, 2010. doi: 10.1093/treephys/tpq033. DOI: https://doi.org/10.1093/treephys/tpq033

Downloads

How to Cite

[1]
J. Bakr, “Soil Respiration in Anthropogenic Disturbed Ecosystems Compared to Deciduous Forests in the Urban Industrial Area”, KJAR, vol. 9, no. 2, pp. 54–64, Oct. 2024, doi: 10.24017/science.2024.2.5.

Article Metrics

Published

12-10-2024

Issue

Section

Pure and Applied Science