Expression and Purification of the Full Length and N-Terminal Truncated Variants of Insect CYP6Z2 in the Cytosol of Escherichia Coli for Potential 3D Experimental Studies
https://doi.org/10.24017/science.2023.2.6
Abstract views: 0 / PDF downloads: 0Abstract
Cytochrome P450 enzymes (P450s) offer innate resistance defence for malaria vectors against the insecticides permitted by WHO to be used in vector control tools. P450s can detoxify broad substrates and simultaneously metabolise them, thus the availability of experimental three-dimensional structures of these key insecticide detoxifiers is vital to improving our knowledge of their enzyme activities. Despite the importance of this family of proteins in insecticide resistance, there are no available experimental three-dimensional structures of insect P450 yet. For this investigation, a carboxy-terminal Histidine-tagged recombinant CYP6Z2 was heterologously expressed in E. coli to generate a soluble holoprotein suitable for an experimental three-dimensional structure. The expressed enzyme was purified from the cytosol of E. coli via the combination of various purification techniques and cholic acid sodium salt. Two truncated N-terminal signal peptides: short deletion of 11 amino acids and long deletion of 23 amino acids of the hydrophobic domain, were created to prevent aggregation, improve solubility, and facilitate crystallisation. The CYP6Z2 (full length) produced a holoprotein with a P450 protein concentration of 0.60 nmol/mL, whereas the two truncated CYP6Z2 isoforms produced only the inactive species with no peak at 450 nm. We conclude that the hydrophobic signal peptide region of the insect Cytochrome P450s seems sensitive and indispensable to ensuring 3-D folding and stability.
Keywords:
References
J. Hemingway and H. Ranson, ‘Insecticide resistance in insect vectors of human disease.’, Annu Rev Entomol, vol. 45, pp. 371–91, 2000, doi: 10.1146/annurev.ento.45.1.371. DOI: https://doi.org/10.1146/annurev.ento.45.1.371
WHO, ‘World Malaria Report’, Geneva, Switzerland, 2023.
WHO, ‘Malaria entomology and vector control’, Geneva, Switzerland, 2013.
WHO, ‘World Malaria Report’, Geneva, Switzerland, 2019.
R. T. Jones et al., ‘Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.’, Pest Manag Sci, vol. 66, no. 10, pp. 1106–15, Oct. 2010, doi: 10.1002/ps.1986. DOI: https://doi.org/10.1002/ps.1986
I. Karunkeret al., ‘Structural model and functional characterization of the Bemisiatabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance.’, Insect Biochem Mol Biol, vol. 39, no. 10, pp. 697–706, Oct. 2009, doi: 10.1016/j.ibmb.2009.08.006. DOI: https://doi.org/10.1016/j.ibmb.2009.08.006
P. Lertkiatmongkol, E. Jenwitheesuk, and P. Rongnoparut, ‘Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity’, BMC Res. Notes., vol. 4, pp. 321, Sep. 2011, doi: 10.1186/1756-0500-4-321. DOI: https://doi.org/10.1186/1756-0500-4-321
L. A. Mclaughlin et al., ‘Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2’, Insect Mol Biol, vol. 17, no. 2, pp. 125–135, Apr. 2008, doi: 10.1111/j.1365-2583.2007.00788.x. DOI: https://doi.org/10.1111/j.1365-2583.2007.00788.x
T.-L. Chiu, Z. Wen, S. G. Rupasinghe, and M. A. Schuler, ‘Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT’, Proceedings of the National Academy of Sciences, vol. 105, no. 26, pp. 8855–8860, Jul. 2008, doi: 10.1073/pnas.0709249105. DOI: https://doi.org/10.1073/pnas.0709249105
L. M. Podust, T. L. Poulos, and M. R. Waterman, ‘Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors’, Proc. Natl. Acad. Sci. USA, vol. 98, no. 6, pp. 3068–73, Mar. 2001, doi: 10.1073/pnas.061562898. DOI: https://doi.org/10.1073/pnas.061562898
E. E. Scott, M. Spatzenegger, and J. R. Halpert, ‘A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function.’, Arch. Biochem .Biophys., vol. 395, no. 1, pp. 57–68, Nov. 2001, doi: 10.1006/abbi.2001.2574. DOI: https://doi.org/10.1006/abbi.2001.2574
U. Heinemann, K. Büssow, U. Mueller, and P. Umbach, ‘Facilities and methods for the high-throughput crystal structural analysis of human proteins’, Acc. Chem. Res., vol. 36, no. 3, pp. 157–163, Mar. 2003, doi: 10.1021/ar010129t. DOI: https://doi.org/10.1021/ar010129t
R. C. Stevens, ‘Design of high-throughput methods of protein production for structural biology’, Structure, vol. 8, no. 9, pp. R177–R185, Sep. 2000, doi: 10.1016/S0969-2126(00)00193-3. DOI: https://doi.org/10.1016/S0969-2126(00)00193-3
J. Kaur, A. Kumar, and J. Kaur, ‘Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements’, Int. J. Biol. Macromol., vol. 106, pp. 803–822, Jan. 2018, doi: 10.1016/j.ijbiomac.2017.08.080. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.080
Esteves, Francisco, José Rueff, and Michel Kranendonk, ‘The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family’, J. Xenobiot., vol. 11, no. 3, pp. 94-114, Jun. 2021, doi: 10.3390/jox111030007. DOI: https://doi.org/10.3390/jox11030007
W. Pamela A., Jose Cosme, Vandana Sridhar, Eric F. Johnson, and Duncan E. McRee. ‘Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity’, Mol. Cell, vol. 5, no. 1, pp. 121-131, Jan. 2000, doi: 10.1016/s1097-2765(00)80408-6 DOI: https://doi.org/10.1016/S1097-2765(00)80408-6
T. L. Poulos and E. F. Johnson, ‘Structures of Cytochrome P450 Enzymes’, in Cytochrome P450, Cham: Springer International Publishing, pp. 3–32, 2015, doi: 10.1007/978-3-319-12108-6_1. DOI: https://doi.org/10.1007/978-3-319-12108-6_1
W. Reichhart, Danièle, and René Feyereisen, ‘Cytochromes P450: a success story’. Genome Biol., vol. 1, no. 6, pp. 1-9, Dec. 2000, doi: 10.1186/gb-2000-1-6-reviews3003. DOI: https://doi.org/10.1186/gb-2000-1-6-reviews3003
J. Cosme and E. F. Johnson, ‘Engineering Microsomal Cytochrome P450 2C5 to Be a Soluble, Monomeric Enzyme’, J. Biol. Chem, vol. 275, no. 4, pp. 2545–2553, Jan. 2000, doi: 10.1074/jbc.275.4.2545. DOI: https://doi.org/10.1074/jbc.275.4.2545
W. Bo, Li-Ping Yang, Xiao-Zhuang Zhang, Shui-Qing Huang, Mark Bartlam, and Shu-Feng Zhou, ‘New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme’, Drug Metab. Rev., vol. 41, no. 4, pp. 573-643, Nov. 2009, doi: 10.1080/03602530903118729. DOI: https://doi.org/10.1080/03602530903118729
G. A. Schoch, J. K. Yano, M. R. Wester, K. J. Griffin, C. D. Stout, and E. F. Johnson, ‘Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site.’, J. Biol. Chem., vol. 279, no. 10, pp. 9497–503, Mar. 2004, doi: 10.1074/jbc.M312516200. DOI: https://doi.org/10.1074/jbc.M312516200
M. R. Wester, E. F. Johnson, C. Marques-Soares, P. M. Dansette, D. Mansuy, and C. D. Stout, ‘Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 A resolution: evidence for multiple substrate binding modes.’, Biochem., vol. 42, no. 21, pp. 6370–9, Jun. 2003, doi: 10.1021/bi0273922. DOI: https://doi.org/10.1021/bi0273922
P. A. Williams, J. Cosme, A. Ward, H. C. Angove, D. Matak Vinković, and H. Jhoti, ‘Crystal structure of human cytochrome P450 2C9 with bound warfarin’, Nature, vol. 424, no. 6947, pp. 464–8, Jul. 2003, doi: 10.1038/nature01862. DOI: https://doi.org/10.1038/nature01862
J. K. Yano, M. R. Wester, G. A. Schoch, K. J. Griffin, C. D. Stout, and E. F. Johnson, ‘The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution.’, J. Biol. Chem., vol. 279, no. 37, pp. 38091–4, Sep. 2004, doi: 10.1074/jbc.C400293200. DOI: https://doi.org/10.1074/jbc.C400293200
N. Kruger, ‘The Bradford Method for Protein Quantitation’ In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks, Humana Press, Totowa, NJ, pp. 17-24, 2009, doi.org/10.1007/978-1-59745-198-7_4. DOI: https://doi.org/10.1007/978-1-59745-198-7_4
R. Ceccarelli EA,’ Recombinant protein expression in Escherichia coli: advances and challenges’, Front. Microbiol., vol 5, pp 172, Apr. 2014, doi: 10.3389/fmicb.2014.00172. DOI: https://doi.org/10.3389/fmicb.2014.00172
W. Benjamin, and A. Sali, ‘Comparative protein structure modeling using MODELLER’ Curr.Bioinform., vol 54, no. 1, pp 5-6, Jun. 2016, doi: 10.1002/cpbi.3. DOI: https://doi.org/10.1002/cpbi.3
S. Martin, Veronika Navrátilová, Markéta Paloncýová, Václav Bazgier, Karel Berka, Pavel Anzenbacher, and Michal Otyepka, ‘Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners’, J. Inorg. Biochem., vol 183, pp 117-136, Jun, (2018), doi: 10.1016/j.jinorgbio.2018.03.002. DOI: https://doi.org/10.1016/j.jinorgbio.2018.03.002
K. Byron, ‘Structural basis for the role in protein folding of conserved proline-rich regions in cytochromes P450’, Toxico Appl Pharmacol., vol 199, no. 3, pp 305-315, Sep. 2004, doi: 10.1016/j.taap.2003.11.030. DOI: https://doi.org/10.1016/j.taap.2003.11.030
M. Caroline S., Tobias WB Ost, Michael A. Noble, Andrew W. Munro, and Stephen K. Chapman, ‘Protein engineering of cytochromes P-450’, Biochim. Biophys. Acta., vol 1543, no. 2 pp 383-407, Dec. 2000, doi: 10.1016/s0167-4838(00)00236-3. DOI: https://doi.org/10.1016/S0167-4838(00)00236-3
N. T. Southall, K. A. Dill, and A. D. J. Haymet, ‘A View of the Hydrophobic Effect’, J. Phys. Chem B., vol. 106, no. 3, pp. 521–533, Jan. 2002, doi: 10.1021/jp015514e. DOI: https://doi.org/10.1021/jp015514e
H. Johanna, Heidi Halbwirth, and Oliver Spadiut, ‘Recombinant production of eukaryotic cytochrome P450s in microbial cell factories’, Biosci. Rep., vol 38, no. 2, Mar. 2018, doi: 10.1042/BSR20171290. DOI: https://doi.org/10.1042/BSR20171290
I. H. Hanna, J. R. Reed, F. P. Guengerich, and P. F. Hollenberg, ‘Expression of human cytochrome P450 2B6 in Escherichia coli: characterization of catalytic activity and expression levels in human liver.’, Arch. Biochem. Biophys., vol. 376, no. 1, pp. 206–16, Apr. 2000, doi: 10.1006/abbi.2000.1708. DOI: https://doi.org/10.1006/abbi.2000.1708
P. Michal, Christoph Crocoll, Mohammed Saddik Motawie, and Barbara Ann Halkier, ‘Systematic engineering pinpoints a versatile strategy for the expression of functional cytochrome P450 enzymes in Escherichia coli cell factories’ Microb. Cell Fact., vol. 22, no. 1, pp 219, Oct. 2023, doi: 10.1186/s12934-023-02219-7. DOI: https://doi.org/10.1186/s12934-023-02219-7
H. Ramanujan S., and Robert J. Keenan, ‘The mechanisms of integral membrane protein biogenesis’, Nat. Rev. Mol. Cell Biol, vol. 23, no. 2, pp 107-124, Feb. 2022, doi: 10.1038/s41580-021-00413-2. DOI: https://doi.org/10.1038/s41580-021-00413-2
Downloads
How to Cite
Article Metrics
Published
Issue
Section
License
Copyright (c) 2024 Michael Kusimo, Taib Ahmed Hama Soor, Ahmed Adebowale Adedeji (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.