Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite

https://doi.org/10.24017/science.2024.1.6

Abstract views: 460 / PDF downloads: 19

Authors

  • Awder Nuree Arf Department of Orthodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq https://orcid.org/0000-0002-7016-4962
  • Fadil Abdullah kareem Department of Orthodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq https://orcid.org/0000-0002-0545-8657
  • Younis Khalid Khdir Department of Technical Mechanical and Energy Engineering, Erbil Technical Engineering College, Erbil Polytechnic University, Erbil, Iraq. https://orcid.org/0000-0001-5861-1283
  • Muhammad Sohail Zafar Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah, Saudi Arabia | Centre of Medical and Bio-allied Health Sciences Research, University of Ajman, Ajman, United Arab Emirates | Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan https://orcid.org/0000-0002-5157-7067

Abstract

Orthodontic acrylic resin is used in the construction of orthodontic appliances. It lacks antimicrobial properties and is prone to microbial infection. So, the infection associated with it can be reduced via modification of orthodontic acrylic resin with nanoparticles (NPs) incorporation. The study directed to evaluate the antifungal properties of modified orthodontic acrylic resin incorporated with magnesium oxide (MgO)-NPs and silver (Ag)-NPs. NPs were mixed with polymethylmethacrylate (PMMA) in ethanol-assisted mixing method. Disc samples (10 mm in diameter and 2 mm thick) of PMMA-MgO, PMMA-Ag nanocomposites and PMMA alone (as control) were prepared. Then, C. albicans was isolated and identified clinically through taking swabs from acrylic denture base orthodontic appliances, cultured on a Sabouraud Dextrose Agar medium, followed by transferring on HiCrome™ candida Differential agar which is a selective and differential medium to distinguish distinct Candida species. The polymerase chain reaction was performed and the amplicon was separated by 2% gel electrophoresis and then visualised by ethidium bromide. DNA sequencing was performed on the sample at Sanger sequencing/ ABI 3500. Antifungal activity of PMMA-MgO and PMMA-Ag (1%, 3% and 5% of NPs) was conducted through disc diffusion assay and colony forming unit counts. The result showed a decrease in the number of adhered Candida albicans (C. albicans) of all concentrations of both nanocomposite and the decrease was statistically significant (P<0.05) in all experimental groups except MgO-NPs 1% and 3%. Increasing the concentration of NPs was associated with decrease in the adhered C. albicans. It was concluded that PMMA-MgO and PMMA-Ag nanocomposites showed anti-adherence activities against clinically isolated C. albicans in concentration dependent manner.

Keywords:

Nanoparticles, PMMA, Antifungal property, Candida albicans, MgO, Ag

References

K. Hsu, A. A. Balhaddad, I. M. Garcia, F. M. Collares, L. DePaola, and M. A. Melo, “Assessment of surface roughness changes on orthodontic acrylic resins by all-in-one spray disinfectant solutions,” J. Dent. Res. Dent. Clin. Dent. Prospects, vol. 14, no. 2, p. 77, 2020. https://doi.org/10.34172%2Fjoddd.2020.019 DOI: https://doi.org/10.34172/joddd.2020.019

S. Gong et al., “An ORMOSIL-containing orthodontic acrylic resin with concomitant improvements in antimicrobial and fracture toughness properties,” PLoS One, vol. 7, no. 8, p. e42355, 2012. https://doi.org/10.1371/journal.pone.0042355 DOI: https://doi.org/10.1371/journal.pone.0042355

T. D. Morgan and M. Wilson, “The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor,” J. Appl. Microbiol., vol. 91, no. 1, pp. 47–53, 2001. https://doi.org/10.1046/j.1365-2672.2001.01338.x DOI: https://doi.org/10.1046/j.1365-2672.2001.01338.x

E. J. Dogramaci and S. J. Littlewood, “Removable orthodontic retainers: practical considerations,” Br. Dent. J., vol. 230, no. 11, pp. 723–730, 2021. https://doi.org/10.1038/s41415-021-2893-3 DOI: https://doi.org/10.1038/s41415-021-2893-3

M. S. Zafar, “Prosthodontic applications of polymethyl methacrylate (PMMA): An update,” Polymers., vol. 12, no. 10, p. 2299, 2020. https://doi.org/10.3390/polym12102299 DOI: https://doi.org/10.3390/polym12102299

G. Batoni et al., “Effect of removable orthodontic appliances on oral colonisation by mutans streptococci in children,” Eur. J. Oral Sci., vol. 109, no. 6, pp. 388–392, 2001. https://doi.org/10.1034/j.1600-0722.2001.00089.x DOI: https://doi.org/10.1034/j.1600-0722.2001.00089.x

A. Brzezińska-Zając, M. Sycińska-Dziarnowska, G. Spagnuolo, L. Szyszka-Sommerfeld, and K. Woźniak, “Candida species in children undergoing orthodontic treatment with removable appliances: a pilot study,” Int. J. Environ. Res. Public Health, vol. 20, no. 6, p. 4824, 2023. https://doi.org/10.3390/ijerph20064824 DOI: https://doi.org/10.3390/ijerph20064824

M. G. J. Waters, D. W. Williams, R. G. Jagger, and M. A. O. Lewis, “Adherence of Candida albicans to experimental denture soft lining materials,” J. Prosthet. Dent., vol. 77, no. 3, pp. 306–312, 1997. https://doi.org/10.1016/S0022-3913(97)70188-4 DOI: https://doi.org/10.1016/S0022-3913(97)70188-4

M. Pourhajibagher et al., “An orthodontic acrylic resin containing seaweed Ulva lactuca as a photoactive phytocom-pound in antimicrobial photodynamic therapy: Assessment of anti-biofilm activities and mechanical properties,” Photodiagnosis Photodyn. Ther., vol. 35, p. 102295, 2021. https://doi.org/10.1016/j.pdpdt.2021.102295 DOI: https://doi.org/10.1016/j.pdpdt.2021.102295

N. C. Polychronakis, G. L. Polyzois, P. E. Lagouvardos, and T. D. Papadopoulos, “Effects of cleansing methods on 3-D surface roughness, gloss and color of a polyamide denture base material,” Acta Odontol. Scand., vol. 73, no. 5, pp. 353–363, 2015. https://doi.org/10.3109/00016357.2014.967720 DOI: https://doi.org/10.3109/00016357.2014.967720

F. Heravi, H. Bagheri, A. Rangrazi, and S. M. Zebarjad, “An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC,” Mater. Res. Express, vol. 3, no. 12, p. 125401, 2016. DOI 10.1088/2053-1591/3/12/125401 DOI: https://doi.org/10.1088/2053-1591/3/12/125401

J. D. Oei et al., “Antimicrobial acrylic materials with in situ generated silver nanoparticles,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 100, no. 2, pp. 409–415, 2012. https://doi.org/10.1002/jbm.b.31963 DOI: https://doi.org/10.1002/jbm.b.31963

A. Sodagar, A. Bahador, S. Khalil, A. S. Shahroudi, and M. Z. Kassaee, “The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins,” J. Prosthodont. Res., vol. 57, no. 1, pp. 15–19, 2013. https://doi.org/10.1016/j.jpor.2012.05.001 DOI: https://doi.org/10.1016/j.jpor.2012.05.001

J. Fernandes et al., “Improving antimicrobial activity of dental restorative materials,” Emerg. Trends Oral Heal. Sci. Dent., pp. 65–82, 2015. http://dx.doi.ora/10.5772/59252 DOI: https://doi.org/10.5772/59252

M. S. Zafar, A. A. Alnazzawi, M. Alrahabi, M. A. Fareed, S. Najeeb, and Z. Khurshid, “Nanotechnology and nano-materials in dentistry,” in Advanced Dental Biomaterials, Elsevier, 2019, pp. 477–505. http://dx.doi.org/10.1016/B978-0-08-102476-8.00018-9 DOI: https://doi.org/10.1016/B978-0-08-102476-8.00018-9

P. Batra, “Applications of nanoparticles in orthodontics,” Dent. Appl. Nanotechnol., pp. 81–105, 2018. http://dx.doi.org/10.1007/978-3-319-97634-1_5 DOI: https://doi.org/10.1007/978-3-319-97634-1_5

S. K. Verma, K. C. Prabhat, L. Goyal, M. Rani, and A. Jain, “A critical review of the implication of nanotechnology in modern dental practice,” Natl. J. Maxillofac. Surg., vol. 1, no. 1, p. 41, 2010. http://dx.doi.org/10.4103/0975-5950.69166 DOI: https://doi.org/10.4103/0975-5950.69166

A. Sodagar, A. Bahador, M. Pourhajibagher, B. Ahmadi, and P. Baghaeian, “Effect of addition of curcumin nano-particles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel,” J. Dent. (Tehran)., vol. 13, no. 5, p. 373, 2016.

K. Krishnamoorthy, G. Manivannan, S. J. Kim, K. Jeyasubramanian, and M. Premanathan, “Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy,” J. Nanoparticle Res., vol. 14, no. 9, p. 1063, 2012, doi: 10.1007/s11051-012-1063-6. DOI: https://doi.org/10.1007/s11051-012-1063-6

L. Huang, D.-Q. Li, Y.-J. Lin, M. Wei, D. G. Evans, and X. Duan, “Controllable preparation of Nano-MgO and inves-tigation of its bactericidal properties.,” J. Inorg. Biochem., vol. 99, no. 5, pp. 986–993, May 2005. doi: 10.1016/j.jinorgbio.2004.12.022. DOI: https://doi.org/10.1016/j.jinorgbio.2004.12.022

L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, and W. Ding, “Magnesium oxide nanoparticles: effective agricultural an-tibacterial agent against Ralstonia solanacearum,” Front. Microbiol., vol. 9, p. 790, 2018. https://doi.org/10.3389%2Ffmicb.2018.00790. DOI: https://doi.org/10.3389/fmicb.2018.00790

K. S. Siddiqi, A. Husen, and R. A. K. Rao, “A review on biosynthesis of silver nanoparticles and their biocidal proper-ties,” J. Nanobiotechnology, vol. 16, no. 1, pp. 1–28, 2018. DOI: https://doi.org/10.1186/s12951-018-0334-5

S. H. Jeong, S. Y. Yeo, and S. C. Yi, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” J. Mater. Sci., vol. 40, pp. 5407–5411, 2005. DOI: https://doi.org/10.1007/s10853-005-4339-8

C. Damm and H. Münstedt, “Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocom-posites,” Appl. Phys. A, vol. 91, pp. 479–486, 2008. DOI: https://doi.org/10.1007/s00339-008-4434-1

A. Estrada-Monje, R. Zitzumbo-Guzmán, J. A. Bañuelos-Díaz, and E. A. Zaragoza-Contreras, “Ultrasonic dispersion and activation of TiO2 nanoparticles and its effect on bacterial inhibition in EVA films,” Mater. Chem. Phys., vol. 235, no. April, 2019, doi: 10.1016/j.matchemphys.2019.121760. DOI: https://doi.org/10.1016/j.matchemphys.2019.121760

D. Boulerba and A. Zoukel, “Poly (methyl methacrylate)/SiO2 nanocomposites: Effects of the molecular interaction strength on thermal properties,” Polym. Polym. Compos., vol. 29, no. 9_suppl, pp. S49–S56, 2021. https://doi.org/10.1177/0967391120985710 DOI: https://doi.org/10.1177/0967391120985710

S. K. Hamid, L. A. Alghamdi, F. A. Alshahrani, S. Q. Khan, A. Matin, and M. M. Gad, “In vitro assessment of artificial aging on the antifungal activity of PMMA denture base material modified with ZrO2 nanoparticles,” Int. J. Dent., vol. 2021, pp. 1–9, 2021. http://dx.doi.org/10.1155/2021/5560443 DOI: https://doi.org/10.1155/2021/5560443

T. H. Nik, A. S. Shahroudi, Z. Eraghihzadeh, and F. Aghajani, “Comparison of residual monomer loss from cold-cure orthodontic acrylic resins processed by different polymerization techniques,” J. Orthod., vol. 41, no. 1, pp. 30–37, 2014. http://dx.doi.org/10.1179/1465313313Y.0000000078 DOI: https://doi.org/10.1179/1465313313Y.0000000078

F.-A. Juan Carlos, G.-C. Rene, V.-S. Germán, and A.-T. Laura Susana, “Antimicrobial poly (methyl methacrylate) with silver nanoparticles for dentistry: A systematic review,” Appl. Sci., vol. 10, no. 11, p. 4007, 2020. https://doi.org/10.3390/app10114007 DOI: https://doi.org/10.3390/app10114007

S. Murat, G. Alp, C. Alatalı, and M. Uzun, “In vitro evaluation of adhesion of Candida albicans on CAD/CAM PMMA‐based polymers,” J. Prosthodont., vol. 28, no. 2, pp. e873–e879, 2019. https://doi.org/10.1111/jopr.12942. DOI: https://doi.org/10.1111/jopr.12942

M. Zainal, N. M. Zain, I. M. Amin, and V. N. Ahmad, “The antimicrobial and antibiofilm properties of allicin against Candida albicans and Staphylococcus aureus–A therapeutic potential for denture stomatitis,” Saudi Dent. J., vol. 33, no. 2, pp. 105–111, 2021. https://doi.org/10.1016/j.sdentj.2020.01.008 DOI: https://doi.org/10.1016/j.sdentj.2020.01.008

M. A. Ibrahim, B. Meera Priyadarshini, J. Neo, and A. S. Fawzy, “Characterization of chitosan/TiO2 nano‐powder modified glass‐ionomer cement for restorative dental applications,” J. Esthet. Restor. Dent., vol. 29, no. 2, pp. 146–156, 2017. https://doi.org/10.1111/jerd.12282 DOI: https://doi.org/10.1111/jerd.12282

M. Alkurt, Z. Y. Duymuş, and M. Gundogdu, “Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin,” J. Prosthet. Dent., vol. 111, no. 1, pp. 71–78, 2014. https://doi.org/10.1016/j.prosdent.2013.09.007 DOI: https://doi.org/10.1016/j.prosdent.2013.09.007

Z. Khurshid et al., “Biochemical analysis of oral fluids for disease detection,” Adv. Clin. Chem., vol. 100, pp. 205–253, 2021. https://doi.org/10.1016/bs.acc.2020.04.005 DOI: https://doi.org/10.1016/bs.acc.2020.04.005

X. Y. He, J. H. Meurman, K. Kari, R. Rautemaa, and L. P. Samaranayake, “In vitro adhesion of Candida species to denture base materials,” Mycoses, vol. 49, no. 2, pp. 80–84, 2006. https://doi.org/10.1111/j.1439-0507.2006.01189.x DOI: https://doi.org/10.1111/j.1439-0507.2006.01189.x

A. Radaic and Y. L. Kapila, “The oralome and its dysbiosis: New insights into oral microbiome-host interactions,” Comput. Struct. Biotechnol. J., vol. 19, pp. 1335–1360, 2021. https://doi.org/10.1016/j.csbj.2021.02.010 DOI: https://doi.org/10.1016/j.csbj.2021.02.010

K. Zomorodian et al., “Assessment of Candida species colonization and denture-related stomatitis in complete denture wearers,” Med. Mycol., vol. 49, no. 2, pp. 208–211, 2011. https://doi.org/10.3109/13693786.2010.507605 DOI: https://doi.org/10.3109/13693786.2010.507605

A. A. Ali, F. A. Alharbi, and C. S. Suresh, “Effectiveness of coating acrylic resin dentures on preventing Candida adhesion,” J. Prosthodont., vol. 22, no. 6, pp. 445–450, 2013. https://doi.org/10.1111/jopr.12046 DOI: https://doi.org/10.1111/jopr.12046

A. Nawasrah, A. AlNimr, and A. A. Ali, “Antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis,” Int. J. Environ. Res. Public Health, vol. 13, no. 5, p. 520, 2016. https://doi.org/10.3390/ijerph13050520 DOI: https://doi.org/10.3390/ijerph13050520

M. M. Gad, R. Abualsaud, A. Rahoma, A. M. Al-Thobity, S. Akhtar, and S. M. Fouda, “Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study,” J. Prosthet. Dent., vol. 127, no. 1, pp. 174–183, 2022. https://doi.org/10.1016/j.prosdent.2020.08.021 DOI: https://doi.org/10.1016/j.prosdent.2020.08.021

S. M. Fouda et al., “The effect of nanodiamonds on candida albicans adhesion and surface characteristics of PMMA denture base material-an in vitro study,” J. Appl. Oral Sci., vol. 27, p. e20180779, 2019. https://doi.org/10.1590%2F1678-7757-2018-0779 DOI: https://doi.org/10.1590/1678-7757-2018-0779

A. S. M. H. Agar, “Composition, Principle, Uses and Preparation [Internet],” Microbiol. Info, 2018.

N. Gligorijević, M. Kostić, A. Tačić, L. Nikolić, and V. Nikolić, “Antimicrobial properties of acrylic resins for dentures impregnated with silver nanoparticles,” Acta Stomatol. Naissi, vol. 33, no. 75, pp. 1696–1702, 2017. doi:10.5937/asn1775696G DOI: https://doi.org/10.5937/asn1775696G

Z. Salem Awfi, M. Ahmed, D. Mahdi Hussein, S. Abdulhameed Khudair, A. S Abed, and A. Abdalabass Algaber, “The Antifungal Efficacy of Heat-Cured Acrylic-Based Soft Denture Liners Infused with Magnesium Oxide Nanoparticles,” J. Nanostructures, vol. 12, no. 3, pp. 738–745, 2022. doi:10.22052/JNS.2022.03.026

N. W. Altaee and A. A. Al-Ali, “The Effect of Adding Magnesium Oxide Nanoparticles to The Cold Cured Acrylic Resin on Candida albicans Adhesion,” Al-Rafidain Dent. J., vol. 22, no. 1, pp. 89–100, 2022. http://dx.doi.org/10.33899/rdenj.2021.129391.1084 DOI: https://doi.org/10.33899/rdenj.2021.129391.1084

H. Kanathila, A. M. Bhat, and P. D. Krishna, “The effectiveness of magnesium oxide combined with tissue conditioners in inhibiting the growth of Candida albicans: An: in vitro: study,” Indian J. Dent. Res., vol. 22, no. 4, p. 613, 2011. DOI: https://doi.org/10.4103/0970-9290.90324

H. K. Abdel-Rahman, “Effect of adding magnesium oxide nanoparticles on the antimicrobial activity of a denture soft liner,” Polytech. J., vol. 10, no. 2, p. 20, 2020. https://doi.org/10.25156/ptj.v10n2y2020.pp132-137 DOI: https://doi.org/10.25156/ptj.v10n2y2020.pp132-137

B. Aldabbagh, H. Jawad, and R. Mahdi, “Study of the properties of MgO/ Poly methyl methacrylate Nano-composites,” J. Phys. Conf. Ser., vol. 2114, no. 1, 2021, doi: 10.1088/1742-6596/2114/1/012039. DOI: https://doi.org/10.1088/1742-6596/2114/1/012039

P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal oxide nanoparticles as bactericidal agents,” Langmuir, vol. 18, no. 17, pp. 6679–6686, 2002. https://doi.org/10.1021/la0202374 DOI: https://doi.org/10.1021/la0202374

Y. Hao et al., “Synthesis of {111} facet-exposed MgO with surface oxygen vacancies for reactive oxygen species gen-eration in the dark,” ACS Appl. Mater. Interfaces, vol. 9, no. 14, pp. 12687–12693, 2017. https://doi.org/10.1021/acsami.6b16856 DOI: https://doi.org/10.1021/acsami.6b16856

A. Abdal Dayem et al., “The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles,” Int. J. Mol. Sci., vol. 18, no. 1, p. 120, 2017. https://doi.org/10.3390/ijms18010120 DOI: https://doi.org/10.3390/ijms18010120

A. Kurt, G. Erkose-Genc, M. Uzun, Z. Emrence, D. Ustek, and G. Isik-Ozkol, “The antifungal activity and cytotoxicity of silver containing denture base material,” Niger. J. Clin. Pract., vol. 20, no. 3, pp. 290–295, 2017, doi: 10.4103/1119-3077.181362. DOI: https://doi.org/10.4103/1119-3077.181362

R. A. Mahmoud, J. Arash, A. Fatemeh, M. D. Solmaz, and L. Farzaneh, “Comparison of Antifungal Properties of Acrylic Resin Reinforced with ZnO and Ag Nanoparticles,” Pharm, Sci., vol, 23, no. 3. pp. 207-214, 2017. http://dx.doi.org/10.15171/PS.2017.31 DOI: https://doi.org/10.15171/PS.2017.31

M. Wekwejt, N. Moritz, B. Świeczko-Żurek, and A. Pałubicka, “Biomechanical testing of bioactive bone cements–a comparison of the impact of modifiers: antibiotics and nanometals,” Polym. Test., vol. 70, pp. 234–243, 2018. https://doi.org/10.1016/j.polymertesting.2018.07.014 DOI: https://doi.org/10.1016/j.polymertesting.2018.07.014

X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, and L.-S. Zheng, “Shape-dependent antibacterial activities of Ag2O polyhedral particles,” Langmuir, vol. 26, no. 4, pp. 2774–2778, 2010. https://doi.org/10.1021/la9028172 DOI: https://doi.org/10.1021/la9028172

V. De Matteis et al., “Silver nanoparticles addition in poly (methyl methacrylate) dental matrix: Topographic and antimycotic studies,” Int. J. Mol. Sci., vol. 20, no. 19, p. 4691, 2019. https://doi.org/10.3390/ijms20194691 DOI: https://doi.org/10.3390/ijms20194691

Y. Zhang, Y. Chen, L. Huang, Z. Chai, L. Shen, and Y. Xiao, “The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin,” Sci. Rep., vol. 7, no. 1, p. 1547, 2017. DOI:10.1038/s41598-017-01686-4 DOI: https://doi.org/10.1038/s41598-017-01686-4

Downloads

How to Cite

[1]
A. N. Arf, F. A. kareem, Y. K. Khdir, and M. S. Zafar, “Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite”, KJAR, vol. 9, no. 1, pp. 66–76, Jun. 2024, doi: 10.24017/science.2024.1.6.

Article Metrics

Published

10-06-2024

Issue

Section

Pure and Applied Science