Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province.

https://doi.org/10.24017/science.2024.1.7

Abstract views: 397 / PDF downloads: 7

Authors

Abstract

A popular way for describing the link between storm rainfall depth and direct runoff is the curve number (CN) method. It is a straightforward approach that has been extensively studied and widely adopted. However, there has been less focus on the impact of slope and the initial abstraction ratio, which is a crucial factor for accurately estimating direct runoff when utilizing the soil conservation service- Curve Number (SCS-CN) method. The initial abstraction ratio is typically assumed to be 0.20, as initially proposed by the method's developers. In this study, we analyzed daily rainfall data from seventeen watersheds in different physiographic locations in the Kurdistan region of Iraq, recorded between 2022 and 2023. Our aim was to assess the effect of slope adjusted curve number and modified the initial abstraction ratio (0.1) on estimation of direct runoff. The results demonstrated that adjusting the CN for slope and using a modified initial abstraction ratio increased the estimated runoff compared to the original method (without adjustment for slope and initial abstraction ratio=0.2). Therefore, when applying the SCS-CN method, it is crucial to correct the CN for slope in steeper areas and consider the initial abstraction ratio rather than relying on the suggested value of 0.2. this study highlights the importance of considering local conditions and estimating the initial abstraction ratio based on specific watershed characteristics to enhance the accuracy of direct runoff estimation using the CN method.

Keywords:

Runoff estimation, SCS-CN method, Slope adjusted CN, Initial abstraction ratio, Sulaimani watersheds

References

R. H. Hawkins, T. J. Ward, E. Woodward, and J. a Van Mullem, “Continuing evolution of rainfall-runoff and the curve number precedent,” 2nd Jt. Fed. Interag. Conf., pp. 2–12, 2010.

Z. H. Shi, L. D. Chen, N. F. Fang, D. F. Qin, and C. F. Cai, “Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China,” Catena, vol. 77, no. 1, pp. 1–7, Apr. 2009, doi: 10.1016/j.catena.2008.11.006. DOI: https://doi.org/10.1016/j.catena.2008.11.006

P. T. S. Oliveira et al., “Curve number estimation from Brazilian Cerrado rainfall and runoff data,” J. Soil Water Conserv., vol. 71, no. 5, pp. 420–429, 2016, doi: 10.2489/jswc.71.5.420. DOI: https://doi.org/10.2489/jswc.71.5.420

USDA-SCS, “Part 630 Hydrology National Engineering Handbook Chapter 10 Estimation of Direct Runoff from Storm Rainfall,” Natl. Eng. Handb., 1972.

M. Lal et al., “Evaluation de la méthode du numéro de courbe du Service de la Conservation des Sols à partir de données provenant de parcelles agricoles,” Hydrogeol. J., vol. 25, no. 1, pp. 151–167, 2017, doi: 10.1007/s10040-016-1460-5. DOI: https://doi.org/10.1007/s10040-016-1460-5

Z. H. Shi, L. D. Chen, N. F. Fang, D. F. Qin, and C. F. Cai, “Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China,” Catena, vol. 77, no. 1, 2009, doi: 10.1016/j.catena.2008.11.006. DOI: https://doi.org/10.1016/j.catena.2008.11.006

J. A. Reistetter and M. Russell, “High-resolution land cover datasets, composite curve numbers, and storm water retention in the Tampa Bay, FL region,” Appl. Geogr., vol. 31, no. 2, pp. 740–747, 2011, doi: 10.1016/j.apgeog.2010.12.005. DOI: https://doi.org/10.1016/j.apgeog.2010.12.005

F. Fan, Y. Deng, X. Hu, and Q. Weng, “Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in guangzhou, China,” Remote Sens., vol. 5, no. 3, pp. 1425–1438, 2013, doi: 10.3390/rs5031425. DOI: https://doi.org/10.3390/rs5031425

M. Elhakeem and A. N. Papanicolaou, “Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA,” Water Resour. Manag., vol. 23, no. 12, pp. 2455–2473, 2009, doi: 10.1007/s11269-008-9390-1. DOI: https://doi.org/10.1007/s11269-008-9390-1

D. E. Woodward, R. H. Hawkins, R. Jiang, A. T. Hjelmfelt, J. A. Van Mullem, and Q. D. Quan, “Runoff curve number method: Examination of the initial abstraction ratio,” World Water Environ. Resour. Congr., no. November 2018, pp. 691–700, 2003, doi: 10.1061/40685(2003)308. DOI: https://doi.org/10.1061/40685(2003)308

Y. Yuan, W. Nie, S. C. Mccutcheon, and E. V. Taguas, “Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona,” Hydrol. Process., vol. 28, no. 3, 2014, doi: 10.1002/hyp.9592. DOI: https://doi.org/10.1002/hyp.9592

V. M. Ponce and R. H. Hawkins, “Runoff Curve Number: Has It Reached Maturity?,” J. Hydrol. Eng., vol. 1, no. 1, pp. 11–19, 1996, doi: 10.1061/(asce)1084-0699(1996)1:1(11). DOI: https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)

M. Caletka, M. Š. Michalková, P. Karásek, and P. Fučík, “Improvement of SCS-CN initial abstraction coefficient in the Czech Republic: A study of five catchments,” Water (Switzerland), vol. 12, no. 7, pp. 1–28, 2020, doi: 10.3390/w12071964. DOI: https://doi.org/10.3390/w12071964

B. Randusová, R. Marková, S. Kohnová, and K. Hlavčová, “Comparison of cn estimation approaches,” no. 7, pp. 34–40, 2015.

S. Kohnová, A. Rutkowska, K. Banasik, and K. Hlavčová, “The L-moment based regional approach to curve numbers for Slovak and Polish Carpathian catchments,” J. Hydrol. Hydromechanics, vol. 68, no. 2, pp. 170–179, 2020, doi: 10.2478/johh-2020-0004. DOI: https://doi.org/10.2478/johh-2020-0004

F. A. Abdulrahman and T. Karim, “Reassessment of scs-cn initial abstraction ratio based on rainfall-runoff event analysis and slope-adjusted cn in a semiarid climate of halabja governorate,” Seybold Rep., vol. 18, no. 11, pp. 1391–1408, 2023, doi: 10.5281/zenodo.10276725.

M. Huang, J. Gallichand, Z. Wang, and M. Goulet, “A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China,” Hydrol. Process. An Int. J., vol. 20, no. 3, pp. 579–589, 2006, doi: DOI: 10.1002/hyp.5925 A. DOI: https://doi.org/10.1002/hyp.5925

S. K. Mishra, A. Chaudhary, R. K. Shrestha, A. Pandey, and M. Lal, “Experimental verification of the effect of slope and land use on SCS runoff curve number,” Water Resour. Manag., vol. 28, pp. 3407–3416, 2014, doi: 10.1007/s11269-014-0582-6. DOI: https://doi.org/10.1007/s11269-014-0582-6

D. S. Deshmukh, U. C. Chaube, A. E. Hailu, D. A. Gudeta, and M. T. Kassa, “Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope,” J. Hydrol., vol. 492, pp. 89–101, 2013, doi: 10.1016/j.jhydrol.2013.04.001. DOI: https://doi.org/10.1016/j.jhydrol.2013.04.001

W. K. Dodds, “Distribution of runoff and rivers related to vegetative characteristics, latitude, and slope: a global perspective,” J. North Am. Benthol. Soc., vol. 16, no. 1, pp. 162–168, 1997, doi: 10.2307/1468248. DOI: https://doi.org/10.2307/1468248

M. Ebrahimian, A. A. B. Nuruddin, M. A. B. M. Soom, A. M. Sood, and L. J. Neng, “Runoff Estimation in Steep Slope Watershed with Standard and Slope-Adjusted Curve Number Methods.,” Polish J. Environ. Stud., vol. 21, no. 5, 2012.

A. N. Sharpley and J. R. Williams, “EPIC: The erosion-productivity impact calculator,” U.S. Dep. Agric. Tech. Bull., no. 1768, p. 235, 1990, [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=US9403696.

A. M. Melesse and S. F. Shih, “Spatially distributed storm runoff depth estimation using Landsat images and GIS,” Comput. Electron. Agric., vol. 37, no. 1–3, pp. 173–183, 2002, doi: 10.1016/S0168-1699(02)00111-4. DOI: https://doi.org/10.1016/S0168-1699(02)00111-4

G. W. Musgrave, “How much of the rain enters the soil?,” 1955.

A. T. Hjelmfelt Jr, “Empirical investigation of curve number technique,” J. Hydraul. Div., vol. 106, no. 9, pp. 1471–1476, 1980, doi: 10.1061/JYCEAJ.0005506. DOI: https://doi.org/10.1061/JYCEAJ.0005506

S. K. Mishra, M. K. Jain, P. Suresh Babu, K. Venugopal, and S. Kaliappan, “Comparison of AMC-dependent CN-conversion formulae,” Water Resour. Manag., vol. 22, no. 10, pp. 1409–1420, 2008, doi: 10.1007/s11269-007-9233-5. DOI: https://doi.org/10.1007/s11269-007-9233-5

P. D. Buringh, “Soils and Soil Conditions In Iraq,” Minist. Agric., vol. 1, pp. 13–72, 1960.

S. K. Mishra and V. Singh, Soil conservation service curve number (SCS-CN) methodology, vol. 42. Springer Science & Business Media, 2003. DOI: https://doi.org/10.1007/978-94-017-0147-1

V. Nourani, V. P. Singh, and H. Delafrouz, “Three geomorphological rainfall--runoff models based on the linear reservoir concept,” Catena, vol. 76, no. 3, pp. 206–214, 2009, doi: 10.1016/j.catena.2008.11.008. DOI: https://doi.org/10.1016/j.catena.2008.11.008

L. M. Fry, T. S. Hunter, M. S. Phanikumar, V. Fortin, and A. D. Gronewold, “Identifying streamgage networks for maximizing the effectiveness of regional water balance modeling,” Water Resour. Res., vol. 49, no. 5, pp. 2689–2700, 2013, doi: 10.1002/wrcr.20233. DOI: https://doi.org/10.1002/wrcr.20233

M. L. Gandini and E. J. Usunoff, “Curve number estimation using remote sensing ndvi in a GIS environment,” J. Environ. Hydrol., vol. 12, 2004.

H. K. Shukur, “Estimation curve numbers using GIS and Hec-GeoHMS ,odel,” J. Eng., vol. 23, no. 5, pp. 1–11, 2017, doi: 10.31026/j.eng.2017.05.01. DOI: https://doi.org/10.31026/j.eng.2017.05.01

M. Nassaji and M. Mahdavi, “The determination of peak-flood using different curve number methods (case study, Central Alborze area),” Iran. J Nat Resour, vol. 58, pp. 315–324, 2005.

M. Lal, S. K. Mishra, and A. Pandey, “Physical verification of the effect of land features and antecedent moisture on runoff curve number,” Catena, vol. 133, pp. 318–327, 2015, doi: 10.1016/j.catena.2015.06.001. DOI: https://doi.org/10.1016/j.catena.2015.06.001

E. A. Baltas, N. A. Dervos, and M. A. Mimikou, “Technical note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece,” Hydrol. Earth Syst. Sci., vol. 11, no. 6, 2007, doi: 10.5194/hess-11-1825-2007. DOI: https://doi.org/10.5194/hess-11-1825-2007

Downloads

How to Cite

[1]
F. A. Abdulrahman and T. H. Karim, “Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province”., KJAR, vol. 9, no. 1, pp. 77–92, Jun. 2024, doi: 10.24017/science.2024.1.7.

Article Metrics

Published

11-06-2024

Issue

Section

Pure and Applied Science