Formulation, Phytochemical Characterization, and Clinical Assessment of a Novel Natural Supplement Targeting Body Composition in Physically Active Individuals: A Randomized Clinical Trial
https://doi.org/10.24017/science.2025.2.2
Abstract views: 0 / PDF downloads: 0Abstract
Nutritional supplementation plays a pivotal role in optimizing body composition, recovery, and performance in physically active individuals. This study aimed to evaluate the effects of an 8-week intervention with a novel natural supplement (NNS) on body composition participants. In a randomized, placebo-controlled trial, 55 participants (NNS: n = 28; placebo: n = 27) consumed either the NNS formulation comprising whey and pea protein, oats, flaxseed, spinach, beetroot, and chia or a placebo. Body composition (muscle mass, weight, BMI, fat %), oxygen saturation, and heart rate were measured at baseline and post-intervention. After 8 weeks, The NNS group showed a significant increase in muscle mass by 41.9%, rising from 12.96 kg to 18.41 kg (p = 0.000), while the placebo group only increased from 13.94 kg to 14.44 kg. Body weight in the NNS group decreased by 8.14 kg, from 76.54 kg to 68.40 kg (p < 0.001), whereas the placebo group gained 2.46 kg. BMI improved in the NNS group, dropping from 30.98 kg/m² to 25.7 kg/m² (p < 0.001), while remaining stable in the placebo group. Oxygen saturation increased from 95.85% to 98.62% (p = 0.001), and heart rate decreased from 76.00 bpm to 68.22 bpm (p = 0.004) in the NNS group. Fat percentage decreased from 30.63% to 27.11% (p = 0.0297). In conclusion, the novel natural multi-ingredient supplement significantly improved muscle mass, reduced body weight and BMI, and enhanced cardiopulmonary parameters, indicating its potential as a safe and effective nutritional strategy for improving body composition and performance in physically active individuals.
Keywords:
References
H. Lukaski and C. J. Raymond-Pope, "New frontiers of body composition in sport," International journal of sports medicine, vol. 42, no. 07, pp. 588–601, 2021. doi: 10.1055/a-1373-5881 DOI: https://doi.org/10.1055/a-1373-5881
P. Nordby et al., "Endurance training per se increases metabolic health in young, moderately overweight men," Obesity, vol. 20, no. 11, pp. 2202–2212, 2012. doi: https://doi.org/10.1038/oby.2012.70. DOI: https://doi.org/10.1038/oby.2012.70
M. Galasso et al., "The Impact of Different Nutritional Approaches on Body Composition in People Living with Obesity," Current Obesity Reports, vol. 14, no. 1, pp. 1–12, 2025. doi: https://doi.org/10.1007/s13679-025-00636-w DOI: https://doi.org/10.1007/s13679-025-00636-w
L. Ramirez, O. N. Kanwugu, and M. N. Ivantsova, "Impact of herbal supplements nowadays: an overview," Chimica Techno Acta, vol. 9, no. 2S, pp. 202292–4, 2022. doi: https://doi.org/10.15826/chimtech.2022.9.2.S4 DOI: https://doi.org/10.15826/chimtech.2022.9.2.S4
A. A. Aragon et al., "International society of sports nutrition position stand: diets and body composition," Journal of the International Society of Sports Nutrition, vol. 14, no. 1, p. 16, 2017. doi: https://doi.org/10.1186/s12970-017-0174-y DOI: https://doi.org/10.1186/s12970-017-0174-y
C. Tang, T. Xi, J. Zheng, and X. Cui, "Chemical Properties of Whey Protein in Protein Powders and Its Impact on Muscle Growth in Athletes: A Review," Natural Product Communications, vol. 20, no. 3, p. 1934578X251326124, 2025. doi: https://doi.org/10.1177/1934578X251326124 DOI: https://doi.org/10.1177/1934578X251326124
Z. Lu, J. He, Y. Zhang, and D. Bing, "Composition, physicochemical properties of pea protein and its application in functional foods," Critical Reviews in Food Science and Nutrition, vol. 60, no. 15, pp. 2593–2605, 2020. doi: https://doi.org/10.1080/10408398.2019.1651248 DOI: https://doi.org/10.1080/10408398.2019.1651248
H. Wu, A. Sung, B. Burns‐Whitmore, E. Jo, and M. Wien, "Effect of Chia Seed (Salvia hispanica, L) Supplementation on Body Composition, Weight, Post‐prandial Glucose and Satiety," vol. 30, pp. lb221–lb221, 2016. doi: https://doi.org/10.1096/fasebj.30.1_supplement.lb221. DOI: https://doi.org/10.1096/fasebj.30.1_supplement.lb221
W. J. Bulsiewicz, "The importance of dietary fiber for metabolic health," American Journal of Lifestyle Medicine, vol. 17, no. 5, pp. 639–648, 2023. doi: https://doi.org/10.1177/15598276231167778 DOI: https://doi.org/10.1177/15598276231167778
M. Neacsu et al., "Phytochemical profile of commercially available food plant powders: their potential role in healthier food reformulations," Food Chemistry, vol. 179, pp. 159–169, 2015. doi: https://doi.org/10.1016/j.foodchem.2015.01.128. DOI: https://doi.org/10.1016/j.foodchem.2015.01.128
A. Braschi, R. Lo Presti, M. G. Abrignani, V. Abrignani, and M. Traina, "Effects of green tea catechins and exercise training on body composition parameters," International Journal of Food Sciences and Nutrition, Vol. 74, no. 1, pp. 3–21, 2023. doi: https://doi.org/10.1080/09637486.2022.2150152 DOI: https://doi.org/10.1080/09637486.2022.2150152
D. Allan and H. Heacock, "Determining the accuracy of colorimetric pH testing compared to potentiometric methods," BCIT Environmental Public Health Journal, 2017. doi: https://doi.org/10.47339/ephj.2017.72. DOI: https://doi.org/10.47339/ephj.2017.72
G. D. Sadler and P. A. Murphy, "pH and titratable acidity," Food Analysis, vol. 4, pp. 219–238, 2010. doi: https://doi.org/10.1007/978-1-4419-1478-1 DOI: https://doi.org/10.1007/978-1-4419-1478-1_13
[14] J. A. Halim et al., "Non-Invasive Digital Refractometer to Measure Maturation of Climacteric Fruits," ASEAN Journal on Science and Technology for Development, vol. 40, no. 3, p. 2, 2024. doi: https://doi.org/10.61931/2224-9028.1541 DOI: https://doi.org/10.61931/2224-9028.1541
F. ARIANI, S. ROHANI, N. M. W. SUKANTY, L. YUNITA, N. Z. SOLEHAH, and B. I. NURSOFIA, "Penentuan kadar lemak pada tepung terigu dan tepung maizena menggunakan metode soxhlet," Jurnal Ganec Swara, vol. 18, no. 1, 2024. doi: DOI: https://doi.org/10.35327/gara.v18i1.747
Abad-Peña, E., Larrea-Marín, M. T., Villanueva-Tagle, M. E., Pomares-Alfonso, "Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals," Talanta, vol. 124, pp. 79–88, 2014. doi: https://doi.org/10.1016/j.talanta.2014.01.066. DOI: https://doi.org/10.1016/j.talanta.2014.01.066
K.S. Liu, "Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials," Journal of the American Oil Chemists’ Society, vol. 71, pp. 1179–1187, 1994. doi: https://doi.org/10.1007/BF02540534. DOI: https://doi.org/10.1007/BF02540534
S. Das and B. Das, "Antioxidant Activity Of Centella asiatica Leaves By DPPH Radical Scavenging Method," Journal of Survey in Fisheries Sciences, pp. 3476–3478, 2023. doi: https://doi.org/10.53555/sfs.v10i1.1529. DOI: https://doi.org/10.53555/sfs.v10i1.1529
A. Hristozova, M. Batmazyan, K. Simitchiev, S. Tsoneva, V. Kmetov, and E. Rosenberg, "Headspace–Solid phase microextraction vs. liquid injection GC-MS analysis of essential oils: Prediction of linear retention indices by multiple linear regression," Acta Chromatographica, vol. 37, no. 1, pp. 76–86, 2025. doi: https://doi.org/10.1556/1326.2024.01207 DOI: https://doi.org/10.1556/1326.2024.01207
R. Alhajjeh and H. Al-Ali, "Application of FTIR spectroscopy method for the quantification of ascorbic acid in bulk materials and pharmaceutical formulation," Iraqi Journal of Pharmaceutical Sciences, vol. 32, no. 3, pp. 186–194, 2023. doi: https://doi.org/10.31351/vol32iss3pp186-194. DOI: https://doi.org/10.31351/vol32iss3pp186-194
T. Faber, J. T. McConville, and A. Lamprecht, "Focused ion beam-scanning electron microscopy provides novel insights into drug delivery phenomena," Journal of Controlled Release, vol. 366, pp. 312–327, 2024. doi: https://doi.org/10.1016/j.jconrel.2023.12.048. DOI: https://doi.org/10.1016/j.jconrel.2023.12.048
R. Jäger et al., "International society of sports nutrition position stand: protein and exercise," Journal of the International Society of Sports Nutrition, vol. 14, no. 1, p. 20, 2017. doi: https://doi.org/10.1080/15502783.2023.2204066 DOI: https://doi.org/10.1080/15502783.2023.2204066
A. Cano, A. B. Maestre, J. Hernández-Ruiz, and M. B. Arnao, "ABTS/TAC methodology: Main milestones and recent applications," Proc. 11, no. 1, p. 185, 2023. doi: https://doi.org/10.3390/pr11010185. DOI: https://doi.org/10.3390/pr11010185
J. D. Philpott, O. C. Witard, and S. D. Galloway, "Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance," Research in Sports Medicine, vol. 27, no. 2, pp. 219–237, 2019. doi: https://doi.org/10.1080/15438627.2018.1550401 DOI: https://doi.org/10.1080/15438627.2018.1550401
M. Hussain et al., "Optimization of organic acid concentrations in calcium gluconate-enriched cola soft drink using response surface methodology," Journal of Food Processing and Preservation, vol. 2024, no. 1, p. 2171802, 2024. doi: https://doi.org/10.1155/2024/2171802 DOI: https://doi.org/10.1155/2024/2171802
D. Sidhu, M. Vasundhara, and P. Dey, "The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies," Phytomedicine, vol. 123, p. 155207, 2024. doi: https://doi.org/10.1016/j.phymed.2023.155207. DOI: https://doi.org/10.1016/j.phymed.2023.155207
D. J. Bhuyan et al.. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants, vol. 8, no. 10, p. 426, 2019. doi: https://doi.org/10.3390/antiox8100426. DOI: https://doi.org/10.3390/antiox8100426
P. A. Sapp et al., "AG1, a Novel Foundational Nutrition Supplement, Demonstrates the Increased Bioaccessibility and Bioavailability of Minerals Compared to a Multivitamin Tablet In Vitro," Biology and Life Sciences Forum, 2023, vol. 29, no. 1: MDPI, p. 5. doi: https://doi.org/10.3390/IECN2023-15523. DOI: https://doi.org/10.3390/IECN2023-15523
Y. Liu et al., "The effect of calcium supplementation in people under 35 years old: a systematic review and meta-analysis of randomized controlled trials," Elife, vol. 11, p. e79002, 2022. doi: https://doi.org/10.7554/eLife.79002. DOI: https://doi.org/10.7554/eLife.79002
R. Kaczorowski et al., "Magnesium and Zinc as Vital Micronutrients Enhancing Athletic Performance and Recovery–a review," Quality in Sport, vol. 33, pp. 56021–56021, 2024. doi: https://doi.org/10.12775/QS.2024.33.56021 DOI: https://doi.org/10.12775/QS.2024.33.56021
U. Toft, N. L. Riis, and A. Jula, "Potassium–a scoping review for Nordic Nutrition Recommendations 2023," Food & Nutrition Research, vol. 68, p. 10.29219/fnr. v68. 10365, 2024. doi: https://doi.org/10.29219/fnr.v68.10365. DOI: https://doi.org/10.29219/fnr.v68.10365
J. W. Nicholls, J. P. Chin, T. A. Williams, T. M. Lenton, V. O’Flaherty, and J. W. McGrath, "On the potential roles of phosphorus in the early evolution of energy metabolism," Frontiers in Microbiology, Vol. 14, p. 1239189, 2023. doi: https://doi.org/10.3389/fmicb.2023.1239189 DOI: https://doi.org/10.3389/fmicb.2023.1239189
R. Sone, Nakazawa S, Ohishi K. Efficacy of mineral-rich antioxidant supplements on oxidative stress markers and exercise performance. Gazz. Med. Ital.-Arch. Sci. Med, vol. 181, pp. 295–302, 2022. doi: https://doi.org/10.23736/S0393-3660.20.04499-X DOI: https://doi.org/10.23736/S0393-3660.20.04499-X
C. van Dronkelaar, A. van Velzen, M. Abdelrazek, A. van der Steen, P. J. Weijs, and M. Tieland, "Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review," Journal of the American Medical Directors Association, vol. 19, no. 1, pp. 6–11. e3, 2018. doi: https://doi.org/10.1016/j.jamda.2017.05.026. DOI: https://doi.org/10.1016/j.jamda.2017.05.026
V. Abrignani, A. Salvo, G. Pacinella, and A. Tuttolomondo, "The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review," International Journal of Molecular Sciences, vol. 25, no. 9, p. 4942, 2024. doi: https://doi.org/10.3390/ijms25094942. DOI: https://doi.org/10.3390/ijms25094942
M. A. van Rooijen, J. Plat, W. A. Blom, P. L. Zock, and R. P. Mensink, "Dietary stearic acid and palmitic acid do not differently affect ABCA1-mediated cholesterol efflux capacity in healthy men and postmenopausal women: A randomized controlled trial," Clinical nutrition, vol. 40, no. 3, pp. 804–811, 2021. doi: https://doi.org/10.1016/j.clnu.2020.08.016 DOI: https://doi.org/10.1016/j.clnu.2020.08.016
H. Meng et al., "Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women—Randomized crossover trial," The American Journal of Clinical Nutrition, vol. 110, no. 2, pp. 305–315, 2019. doi: https://doi.org/10.1093/ajcn/nqz095. DOI: https://doi.org/10.1093/ajcn/nqz095
D. Miklankova, I. Markova, M. Hüttl, B. Stankova, and H. Malinska, "The Different Insulin‐Sensitising and Anti‐Inflammatory Effects of Palmitoleic Acid and Oleic Acid in a Prediabetes Model," Journal of Diabetes Research, vol. 2022, no. 1, p. 4587907, 2022. doi: https://doi.org/10.1155/2022/4587907 DOI: https://doi.org/10.1155/2022/4587907
F. Marangoni et al.. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis. 292, pp. 90–98, 2020. doi: https://doi.org/10.1016/j.atherosclerosis.2019.11.018. DOI: https://doi.org/10.1016/j.atherosclerosis.2019.11.018
A. Sala-Vila, J. Fleming, P. Kris-Etherton, and E. Ros, "Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardiovascular disease and cognition," Advances in Nutrition, vol. 13, no. 5, pp. 1584–1602, 2022. doi: https://doi.org/10.1093/advances/nmac016. DOI: https://doi.org/10.1093/advances/nmac016
H. Mugo Moses, "The role of omega-3 fatty acids in inflammation and immune function," IDOSR Journal of Biology, Chemistry and Pharmacy, vol. 9, pp. 1–4, 2024. doi: https://doi.org/10.59298/IDOSR/JBCP/24/93.1400. DOI: https://doi.org/10.59298/IDOSR/JBCP/24/93.1400
E. López-Millán, J. A. Gutiérrez-Uribe, and M. Antunes-Ricardo, "Omega-3 supplementation: Impact on Low Chronic Inflammation Associated with Obesity," Trends in Food Science & Technology, p. 104799, 2024. doi: https://doi.org/10.1016/j.tifs.2024.104799 DOI: https://doi.org/10.1016/j.tifs.2024.104799
D. Bharati and A. Puri, "Exploration and Evaluation of In-vitro Antioxidant Activity of ABANA: A Polyherbal Formulation," Current Functional Foods, vol. 1, no. 2, p. E060622205665, 2023. doi: https://doi.org/10.2174/2666862901666220606155358 DOI: https://doi.org/10.2174/2666862901666220606155358
J. Rumpf, R. Burger, and M. Schulze, "Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins," International Journal of Biological Macromolecules, vol. 233, p. 123470, 2023. doi: https://doi.org/10.1016/j.ijbiomac.2023.123470. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123470
M. R. Venkateswaran, S. Jayabal, S. Murugesan, and S. Periyasamy, "Identification of polyphenolic contents, in vitro evaluation of antioxidant and antidiabetic potentials of a polyherbal formulation-Mehani," Natural product research, vol. 35, no. 16, pp. 2753–2757, 2021. doi: https://doi.org/10.1080/14786419.2019.1660978 DOI: https://doi.org/10.1080/14786419.2019.1660978
A. Kolonas et al., "Antioxidant and antibacterial properties of a functional sports beverage formulation," International Journal of Molecular Sciences, vol. 24, no. 4, p. 3558, 2023. doi: https://doi.org/10.3390/ijms24043558. DOI: https://doi.org/10.3390/ijms24043558
N. A. Colussi et al., "Dietary supplementation with integral chia and flax flours ameliorates systemic inflammation," 2023. doi
W. Męczka, A. Duda-Madej, M. Grabarczyk, and K. Wińska, "Natural compounds in the battle against microorganisms—Linalool," Molecules, vol. 27, no. 20, p. 6928, 2022. doi: https://doi.org/10.3390/molecules27206928. DOI: https://doi.org/10.3390/molecules27206928
C. C. Hoch et al., "1, 8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases," Biomedicine & Pharmacotherapy, vol. 167, p. 115467, 2023. doi: https://doi.org/10.1016/j.biopha.2023.115467. DOI: https://doi.org/10.1016/j.biopha.2023.115467
M. E. Maffei, "Plant natural sources of the endocannabinoid (E)-β-caryophyllene: A systematic quantitative analysis of published literature," International Journal of Molecular Sciences, vol. 21, no. 18, p. 6540, 2020.doi: https://doi.org/10.3390/ijms21186540. DOI: https://doi.org/10.3390/ijms21186540
D. E. Lugo-Lugo et al., "Antinociceptive local activity of 4-allyl-1-hydroxy-2-methoxybenzene (eugenol) by the formalin test: an anti-inflammatory effect," Brazilian Journal of Pharmaceutical Sciences, vol. 55, p. e18022, 2019.doi https://doi.org/10.1590/s2175-97902019000118022 DOI: https://doi.org/10.1590/s2175-97902019000118022
F. Geddo et al., "Plant-derived trans-β-caryophyllene boosts glucose metabolism and ATP synthesis in skeletal muscle cells through cannabinoid type 2 receptor stimulation," Nutrients, vol. 13, no. 3, p. 916, 2021. doi: https://doi.org/10.3390/nu13030916. DOI: https://doi.org/10.3390/nu13030916
R. Ellerbrock and H. H. Gerke, "FTIR spectral properties affected by OM-cation interactions," in EGU General Assembly Conference Abstracts, 2020, p. 18375. doi: https://doi.org/10.5194/egusphere-egu2020-18375. DOI: https://doi.org/10.5194/egusphere-egu2020-18375
H. T. Kristensen, M. Christensen, M. Hansen, M. Hammershøj, T. Dalsgaard, "Mechanisms behind protein-protein interactions in a β-lg-legumin co-precipitate," Food Chemistry, vol. 373, p. 131509, 2022. doi: https://doi.org/10.1016/j.foodchem.2021.131509. DOI: https://doi.org/10.1016/j.foodchem.2021.131509
C. K. Reddy, E. S. Jung, S. Y. Son, and C. H. Lee, "Inclusion complexation of catechins-rich green tea extract by β-cyclodextrin: Preparation, physicochemical, thermal, and antioxidant properties," Lwt. 131, p. 109723, 2020. doi: https://doi.org/10.1016/j.lwt.2020.109723 DOI: https://doi.org/10.1016/j.lwt.2020.109723
J. Guevara-Zambrano, P. Chowdhury, A. Wouters, and S. Verkempinck, "Solubility,(micro) structure, and in vitro digestion of pea protein dispersions as affected by high pressure homogenization and environmental conditions," Food Research International, vol. 188, p. 114434, 2024. doi: https://doi.org/10.1016/j.foodres.2024.114434. DOI: https://doi.org/10.1016/j.foodres.2024.114434
Guamán-Balcázar et al.: Encapsulation of Phenolic Compounds Extracted from Beet By-Products: Analysis of Physical and Chemical Properties," Foods, vol. 13, no. 18, p. 2859, 2024. doi: https://doi.org/10.3390/foods13182859. DOI: https://doi.org/10.3390/foods13182859
K. Sarabandi, P. Gharehbeglou, and S. M. Jafari, "Scanning electron microscopy (SEM) of nanoencapsulated food ingredients: Elsevier, 2020, pp. 83–130. doi: https://doi.org/10.1016/B978-0-12-815667-4.00003-1 DOI: https://doi.org/10.1016/B978-0-12-815667-4.00003-1
I. Lingvay et al., "Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics," Obesity, vol. 31, no. 1, pp. 111–122, 2023. doi: https://doi.org/10.1002/oby.23621. DOI: https://doi.org/10.1002/oby.23621
P. Whaikid and N. Piaseu, "The effectiveness of protein supplementation combined with resistance exercise programs among community-dwelling older adults with sarcopenia: a systematic review and meta-analysis," Epidemiology and Health, vol. 46, p. e2024030, 2024. doi: https://doi.org/10.4178/epih.e2024030. DOI: https://doi.org/10.4178/epih.e2024030
J. P. Nederveen et al., "Novel multi-ingredient supplement facilitates weight loss and improves body composition in overweight and obese individuals: a randomized, double-blind, placebo-controlled clinical trial," Nutrients, vol. 15, no. 17, p. 3693, 2023. doi: https://doi.org/10.3390/nu15173693. DOI: https://doi.org/10.3390/nu15173693
Glynn, E. L., Fleming, S. A., Edwards, C. G., Wilson, M. J., Evans, M., Leidy, H. J., "Consuming a protein and fiber-based supplement preload promotes weight loss and alters metabolic markers in overweight adults in a 12-week, randomized, double-blind, placebo-controlled trial," The Journal of Nutrition, vol. 152, no. 6, pp. 1415–1425, 2022. doi: https://doi.org/10.1093/jn/nxac038. DOI: https://doi.org/10.1093/jn/nxac038
S. Jeong, R. Bonner, A. Firari, S. Kurti, M. J. Saunders, and C. J. Womack, "The effect of acute hydration on body composition assessed by multi-frequency and single-frequency bioelectrical impedance," The Journal of Sports Medicine and Physical Fitness, 2023. doi: https://doi.org/10.23736/s0022-4707.23.14913-9 DOI: https://doi.org/10.23736/S0022-4707.23.14913-9
L. Wang et al., "Effects of dietary nitrate supplementation on isometric performance and physiological responses in college bodybuilders: a randomized, double-blind, crossover study," Frontiers in Nutrition, vol. 12, p. 1576712, 2025.doi: https://doi.org/10.3389/fnut.2025.1576712 DOI: https://doi.org/10.3389/fnut.2025.1576712
G. L. Garcia, L. G. G. Porto, C. J. G. da Cruz, and G. E. Molina, "Can resting heart rate explain heart rate and parasympathetic responses during rest, exercise, and recovery?," Plos one, vol. 17, no. 12, p. e0277848, 2022. doi: https://doi.org/10.1371/journal.pone.0277848. DOI: https://doi.org/10.1371/journal.pone.0277848
J. Puente-Fernández et al., "No impact of combining multi-ingredient supplementation with exercise on body compo-sition and physical performance, in healthy middle-aged and older adults: a systematic review and meta-analysis," Experimental Gerontology, vol. 172, p. 112079, 2023. doi: https://doi.org/10.1016/j.exger.2022.112079. DOI: https://doi.org/10.1016/j.exger.2022.112079
Downloads
How to Cite
Article Metrics
Published
Issue
Section
License
Copyright (c) 2025 Tablo Azad Hama salih, Halgord Ali M. Farag (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.