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1. Introduction 
Many production applications currently use electric machines extensively. The expansion of con-

temporary industries and the quick development of science and technology have resulted in the exten-
sive usage of mechanical equipment in many different applications. However, these devices often work 
in adverse circumstances, such as high humidity and large loads, which may cause motor issues. This 
leads not only to expensive maintenance expenses but also to decreased production, significant finan-
cial losses, and maybe even a risk to human life. Important parts of industrial systems include rotating 
machinery and induction motors. The stator, rotor, shaft, and bearings are among the several compo-
nents that make up these spinning devices [1]. Rolling element bearings, sometimes known as bearings, 
are vital yet fragile components of machinery. The status of the equipment has a direct impact on its 
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 Abstract: Bearings are essential for spinning machines. An unexpected bearing 
failure could disrupt production. This study describes a sophisticated method 
for diagnosing deep groove ball bearing issues. We designed and built an exper-
imental setup to collect precise data in many scenarios, including inner race 
fault, outer race fault, cage fault, and normal state. Machine learning (ML) and 
deep learning (DL) algorithms have improved image processing, speech recog-
nition, defect detection, item identification, and medical sciences. Experts antic-
ipate a surge in equipment problems as intelligent machinery becomes more 
prevalent. Deep learning methods for equipment failure detection and diagnosis 
have increased steadily. Research papers have used deep learning to study and 
share open-source and closed source data. The Case Western Reserve University 
(CWRU) bearing data set identifies abnormalities in machinery bearings. Popu-
larity makes this dataset simple to access. This dataset is 'ideal' for model verifi-
cation and is widely accepted. This article describes current deep learning re-
search using the CWRU bearing dataset to diagnose machinery faults precisely.  
Using the CWRU dataset, this article has the potential to be of significant service 
to   future academics who desire to begin their work on the detection and diagnosis 
of machinery failures. This is our view.This paper focuses on utilizing the CWRU 
bearing dataset combined with Elastic Weight Consolidation (EWC   ) algorithm to 
achieve a notable accuracy of 97.06%. The streamlined approach emphasizes the 
use of raw data and advanced methodologies, showcasing the significance of 
achieving high diagnostic accuracy while providing a reliable alternative to 
conventional fault classification techniques. 
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functioning, stability, durability, and efficiency. This includes the occurrence of fractures or other faults 
in various places under different loads [2]. The rolling element bearing is composed of the inner race, 
outer race, cage, and ball (REB). The ball bearing systems of the Case Western Reserve University 
(CWRU   ) bearing test rig arrangement is shown in figure 1, which also provides a cross-sectional view 
of the bearing's constituent parts [3, 4]. A number of studies [5, 6] that examined the possibility of in-
duction engine failures found that bearing issues are the most common kind of problem and make up 
one-third of all defects. These bearings' failure is a major contributor to machine failure, which may 
result in serious dangers to property and safety as well as, in some cases, machine accidents or fatalities 
[7]. Due to these features, identifying and evaluating flaws in these REBs has grown in importance as 
part of engineering and research projects. Without interfering with the production process, it is ex-
pected that REBs' condition monitoring and defect detection techniques would provide real-time infor-
mation on the equipment's operating state. Mechanical vibration signals are also thought to be highly 
useful and efficient information sources for identifying, locating, and differentiating different types of 
bearing-related issues [1, 8].  

 
Figure 1: Ball bearing system components are part of the experimental setup of the CWRU bearing test apparatus [4]. 

The process of identifying bearing problems involves positioning sensors at several locations on 
the machine. These sensors communicate with the data collection system to provide signals for further 
analysis [9]. Vibration data collection for the CWRU dataset is shown in figure 2. The quality of the 
vibration signals gathered, the efficiency of the signal processing and feature extraction techniques, and 
other factors all affect how effectively defect detection systems work [1]. In the past, we often only 
performed such equipment maintenance after a fault had occurred. When a posterior maintenance tech-
nique is used, unexpected equipment failures often occur, which may cause deaths as well as financial 
losses [10]. As a result, bearings need to be inspected while the machine is operating. Several machine 
learning, deep learning, and signal processing methods have been created by researchers to detect and 
diagnose equipment and REB flaws.  
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Figure 2: An overview of the PRONOSTIA experimental platform in a format the Paderborn University dataset includes [11]. 

The increasing reliance on rotating machinery in industrial applications raises concerns over costly 
and hazardous breakdowns, emphasizing the need for efficient, real-time bearing fault detection. While 
existing methods are effective to some extent, they struggle with retaining learned knowledge when 
new fault types are introduced. This limitation hamper’s fault diagnosis accuracy. This work introduces 
Elastic Weight Consolidation (EWC) as a novel technique for bearing fault diagnosis, addressing the 
issue of catastrophic forgetting. By using EWC, the model retains previously learned knowledge while 
accurately identifying new fault types. On the CWRU dataset, the EWC-based model achieves a success 
rate of 97.06%, setting a new benchmark for failure diagnostics and demonstrating its reliability across 
various fault types. 

 
2. Related work   

In order to prevent the leakage of bearing information between splits, Hendriks et al. [12] intro-
duced a novel dataset partitioning technique. By using the concept of dividing sets based on fault size 
instead of load, the authors observed that the leaking of bearing information no longer happened in the 
measurements of defective bearings. The authors divided fault classification into seven categories, in-
cluding healthy states and different types of faults at different locations. Their proposed method effec-
tively improved the performance of state-of-the-art deep convolutional networks. These networks ini-
tially achieved a classification accuracy of 95% when considering load division but now achieve a more 
realistic accuracy of 53% when considering fault size division. Abburi et al. [13], however, suggested an 
alternative method of dividing the dataset in order to prevent the leakage of bearing information. 
Within their proposed division, they exclusively allocate drive-end fault measures for the training set, 
fan-end fault measurements of sizes 7 and 14 mils for the validation set, and fan-end measurements of 
size 21 mils for the test sets. The tests used conventional machine learning algorithms, including Ran-
dom Forest, Naïve Bayes, and Support Vector Machine, to tackle a multi-class issue with three defect 
categories (inside race, outside race, ball) and a healthy condition. According to the findings, the bear-
ing split performed worse than the random split in all reported metrics (accuracy, precision, macro F1-
score, recall). The random split, where the bearing information leaking happened, had better outcomes. 
The accuracy of the Naive Bayes model decreased from 85.8% to 69.5%. However, as previously said, 
none of these formulations that include several classes are capable of preventing data leakage from the 
healthy class, which is why we refrain from utilizing a multi-label method.  

While some prior studies have used the CWRU dataset for defect identification and diagnosis us-
ing a multi-label method, they have employed various formulations that do not consider the particular 
issues mentioned in this research. Shen et al. [14] examine two multi-class labels that indicate fault type 
and fault magnitude in the CWRU dataset. Because a single label is used for fault type diagnosis, the 
problem remains a multi-class issue, assuming that fault types are mutually exclusive. Similarly, Yu et 
al. [15] examine three multi-class labels that correlate to fault magnitude, fault kind, and motor speed, 
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with the exception that the healthy condition is disregarded. This is a multi-class problem that focuses 
on diagnosing fault types without addressing fault detection. The formulations by Chen et al. [16] and 
Jin et al. [17] are the most similar to ours. They use binary labels to represent the three fault types and a 
healthy state. Additionally, they also include labels for each combination of fault type and size, as de-
scribed in [12]. Nevertheless, our technique does not require the use of healthy data for training, in 
contrast to the requirement for healthy state label inclusion. Furthermore, these studies only focus on 
signals obtained from a single position (either the drive end or fan end) that correspond to problems at 
that specific position. As a result, the issue of fault localization is not addressed. Significantly, these 
studies exhibit a distinction from our own in their approach to dividing the information into training 
and testing divisions. Unfortunately, this divide fails to prevent data leakage [13], whether it be at the 
segmentation level or the bearing level. These leakages mostly result in excessively optimistic outcomes 
with virtually perfect accuracy, making it impossible to accurately assess their effectiveness. None of 
these studies consider the use of fan end signals as negative samples for detecting defects at the drive 
end, and vice versa. As far as we know, our research is the only one that has used a multi-label approach 
on the CWRU dataset to tackle issues like bearing data leakage and imbalance in the healthy class. This 
approach helps to better align the problem with real-world conditions and ensures accurate evaluation 
of the model. 

Altogether, the cited papers enhance the progress of fault diagnosis and prognosis of rotating ma-
chinery, bearings, and industrial equipment with the help of machine learning, deep learning, and hy-
brid optimization. A number of these works Residual Diagnosis towards the intelligent fault detection 
frameworks using the time-frequency analysis with self-attention mechanism and neural network for 
the purpose of fault detection, classification, and rolling bearing remaining useful life estimation. For 
example, Rajabi et al. [18] and Yang et al. [19] put forward the new idea of permutation entropy-based 
neuro-fuzzy models and indexes of performance degradation for enhancing the fault detection rate, 
and Liu and Fan [20] introduced the new built multistage model of adaptive adjudging which has taken 
the three-source varying into consideration. Literatures like Saha et al. [21] and Ding et al. [22] focus on 
the use of transformer-based architectures and self-attention mechanism for better fault feature identi-
fication and diagnosis of the rolling bearings. Furthermore, Lu et al. [23], Zhang et al [24], and Alonso-
Gonzalez et al. [25] present the use of deep learning techniques such as stacked denoising autoencoder 
and envelope analysis for signal processing in diagnosis of faults. Some of the works, which have ex-
plored Convolutional Neural Network - Long Short-Term Memory approaches include Tian et al. [26], 
Sun and Zhao [27], and Ince et al. [28] that aimed at enhancing the classification capabilities when op-
erating under different conditions through learning from hybrid models and self-organizing neural 
networks. Other similar studies Toma et al. [ 29], Yang et al. [30] uses conditional Generative Adversarial 
Networks and Two-Dimensional Convolutional Neural Networks to improve fault recognition with a 
few training samples while Patil et al. [31], Barcelos & Marques Cardoso [32] uses harmonic spectrum 
analysis and deep learning approach to diagnose faults from current signals. Also, the knowledge of 
Munir et al. [33] and Xie et al. [34] is helpful as the authors used the Gated Recurrent Units - Long Short-
Term Memory networks and multi-layer perceptron hybrid in the identification of software defects and 
bearings faults. The current year’s works contain Li et al. [35], Xia et al. [36], and Saberi et al. [37] in that 
they employ federated learning, Light GBM models, and recursive feature to enhance the scalability of 
fault detection under different working conditions. At last, in Kiranyaz et al. [38], the authors disclose 
how the blind domain adaptation can be used in predictive maintenance by presenting a zero-shot 
domain transition method for motor health monitoring.  

These papers together show a development of artificial intelligence based methods for the diag-
nosis of industrial faults to support real-time prognosis and reliability estimation of industrial systems 
by deep learning feature extraction and adaptive optimization technique. 

 
3. Materials and Methods     

The methodology for fault detection in the bearing dataset, as well as the visualization process. 
Figure 3 graphically depicts the neural network framework that this study utilized. To apply EWC 
algorithm within the neural network framework for fault classification and visualization using 
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relevance maps, we preprocessed the bearing dataset to extract pertinent characteristics from the signal 
data. The following subsections provide an extensive description of these techniques. 

 
Figure 3: EWC-based fault detection methodology diagram. 

Figure 4 illustrates the division of the paper's overall methodology into several stages. All stages 
are explained below. In bearing fault detection, the terms "inner," "outer," "ball," and "normal" refer to 
different, conditions or locations of faults within a bearing: 

• Inner Race Fault: This type of fault occurs in the bearing's inner race. The inner race is the 
inner ring that rotates along with the shaft. Faults here can cause high-frequency vibrations 
due to the constant contact between the balls or rollers and the damaged inner surface. 

• Outer Race Fault: This fault is located on the bearing's outer race, which is the outer ring that 
typically remains stationary in the bearing housing. Faults on the outer race produce distinct 
vibration patterns as the balls or rollers pass over the damaged area. 

• Ball Fault: This refers to a fault in the rolling elements themselves, such as the bearing's balls 
or rollers. A defect in the ball can lead to vibrations when it contacts the races (both inner and 
outer), affecting the overall performance of the bearing. 

• Normal (Healthy): This condition refers to a bearing in good working order with no detecta-
ble faults. The vibrations from a normal bearing will be minimal and consistent, as there are 
no defects in the races or rolling elements. In fault detection, the goal is to identify these spe-
cific types of faults based on the vibration signals or other data collected from the bearing. 
We can analyze each type of fault's unique vibration signature to ascertain its presence and 
severity.  

Figure 4: Components of a bearing (typical bearing faults). 
 
3.1.  Dataset CWRU 
The CWRU dataset is widely used, freely available, and readily accessible. The dataset, which in-

cludes recorded data on both normal and problematic bearings, is stored and accessed on the CWRU 
website. Both standard bearings and bearings with single-point failures in the drive-end (DE) and fan-
end (FE) regions are included in the database. We use the dataset as a fundamental dataset [2] and as a 
benchmark [39] to evaluate the effectiveness of various machine learning and deep learning 
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approaches. The procedure for obtaining the Case Western Reserve University dataset using a bearing 
test rig design is shown in figure 1. The system consists of a dynamometer, a torque transducer, a 2-
horsepower Reliance electric induction motor, and control electronics that are not seen in the photo. 
The test bearings provide support for the motor shaft. The torque for the shaft is produced by a dyna-
mometer and an electronic control system. We intentionally introduced flaws in the inner and outer 
races of the REBs. After that, the test rig repaired all of the troublesome bearings. Using electro dis-
charge machining, we manufactured single-point flaws in the test bearings with diameters of 7, 14, 21, 
28, and 40 mils. 0.001 inches is equal to one mil. We utilized Svenska Kullagerfabriken bearings for 
faults with diameters of 7, 14, and 21 mil, and Nitto Toyo Needle bearings of similar quality for faults 
with dimensions of 28 and 40 mil. The fault depth was consistent at 0.011 inches for all the bearings 
except for the inner-race defective bearing (diameter: 0.028 inches), the outer-race faulty bearing (diam-
eter: 0.040 inches), and the ball bearing fault (diameter: 0.028 inches). The 0.050-inch fault depth is 
shared by the 0.028-inch inner-race and 0.040-inch outer-race defective bearings. Furthermore, we have 
determined that the ball-bearing flaw is 0.150 inches deep and has a diameter of 0.028 inches [4]. 

The dataset consists of 161 records from four classes: 48k normal baseline, 48k drive-end fault, 12k 
drive-end fault, and 12k fan-end fault. Datasets for inner-race, outer-race, and ball  bearing difficulties 
are included in each category. We classify the outer race faults into three groups based on their relative 
locations to the load zone: "centered" faults (fault at 6 o'clock), "orthogonal" faults (fault at 3 o'clock), 
and "opposite" faults (fault at 12 o'clock). There is a pattern to the data file names: the bearing loads are 
indicated by the last number, the fault diameters are represented by the following three numbers, and 
the fault location is indicated by the first letter. For example, information on a ball bearing problem 
may be found in data file 'B007_0.'. The bearing develops a 0.007-inch-diameter flaw while it is operat-
ing at a motor load of zero horsepower. Details on an outer-race flaw of 0.014 inches are included in 
the data file "OR014@6_1.". The failure happened at six o'clock after we centered the weight. We saw 
the problem when the system operated with a motor load of one horsepower [4]. This dataset is used 
in bearing defect diagnostics [40]. Important parts of the test rig include a load motor, a test module, a 
driving motor, and a torque measuring shaft. The mechanical setup of the experimental equipment 
used for the Paderborn University dataset. High-resolution vibration data from testing on 26 sets of 
damaged bearings and six sets of undamaged bearings make up the Paderborn University bearing da-
taset. In order to simulate actual degradation, twelve of the twenty-six purposefully damaged bearing 
sets underwent accelerated life testing [41, 42]. 

This dataset is publicly accessible due to the efforts of CWRU. In this research used the CWRU 
dataset to evaluate the proposed approach. The experimental setup utilized by CWRU to investigate 
issues relating to ball bearings is shown in figure 5. Three accelerometers were utilized to detect vibra-
tions. At the hour mark, we mounted the accelerometers on the housings for the DE and FE. The Sven-
ska Kullagerfabriken deep-groove ball bearings, including the 6205-2RS and 6203-2RS JEM models, 
were used by the DE and FE. 
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Figure 5: CWRU motor experimental rig [11]. 

 
Table 1: CWRU Bearing Dataset Description [2, 43]. 

Fault Type Load (hp) 

 
Fault 

Diameter 
(Inch) 

Fault                   
Position Relative to 

Load Zone 
Fault   

Labels 0 1 2 

Normal 0 - N 243,938 485,643 485,643 

Ball 
0.007 
0.014 
0.021 

- 
7_BA 

14_BA 
21_BA 

243,538 
249,146 
243,938 

486,804 
487,384 
487,384 

488,545 
486,804 
491,446 

Inner Race 
0.007 0.014 

0.021 
- 

7_IR 
14_IR 
21_IR 

243,938 
63,788 
244,339 

485,643 
487,964 
491,446 

485,643 
485,063 
486,804 

Outer Race 
0.007 
0.014 
0.021 

@6:00 
@3:00 

@12:00 
@6:00 
@6:00 
@3:00 

@12:00 

7_OR1 
7_OR2 
7_OR3 

14_OR1 
21_OR1 
21_OR2 
21_OR3 

244,739 
124,602 
129,969 
245,140 
246,342 
128,663 
130,549 

486,804 
485,643 
483,323 
486,804 
487,964 
487,384 
486,804 

487,964 
486,224 
484483 
488,545 
489,125 
484,483 
486,224 

 Total Data Points 2,782,629 6,816,994 6,816,996 
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Table 1 lists the number of data points for each type, size, and location of fault under three distinct 
load scenarios. These counts show significant differences. The dataset typically has 243,938 data points 
when there is no load (0 hp). The dataset does, however, indicate a decline to 243,538 data points in the 
instance of a ball defect with a diameter of 0.007 inches. The dataset's overall number of data points 
increases dramatically with load, indicating its magnitude and potential for extensive model training 
and assessment. To enable exact detection and investigation, we use fault labels to represent the kind, 
extent, and location of the problem. Our study aims to assess the performance of several machine learn-
ing models, including both conventional methods and neural networks, in accurately detecting bearing 
problems using this dataset. Our goal is to improve fault diagnosis processes and gain a deeper under-
standing of how load variations and specific problems affect diagnostic accuracy using an integrated 
approach. 

 
3.2.  EWC Algorithm 
The study extracted specific features from a dataset to aid in fault identification and prediction. 

The following nine features were calculated for this purpose: minimum, maximum, mean, standard 
deviation, root mean square, skewness, kurtosis, crest factor, and form factor. These features were com-
puted for time segments containing 2048 data points, corresponding to 0.04 seconds of signal at a sam-
pling frequency of 48 kHz. This was the best strategy in achieving the objective of identifying the right 
characteristics of the signals of the fault. When it comes to fault detection in bearings, we use the EWC 
algorithm to handle the problem of continual learning, which mainly comprises of catastrophic forget-
ting. To improve the performance of the fault detection system in capturing essential information about 
previous states of the bearing as well as adapting to new data that reflects different fault conditions, we 
incorporate the EWC method in the modelling process. With regards to bearings, which are organiza-
tional parts of rotating mechanisms, the bearings are apt to be put through several running conditions 
that cause different types of defects. The objective is to create a classifier that can identify these kinds 
of faults when they occur in the future but, at the same time, does not forget the kinds of faults it has 
seen in the past. In this framework, one can further train this model on different fault conditions by 
applying the EWC algorithm that allows the model to recognize earlier faults while at the same time 
training from other faults. 

 
3.2.1. Implementing EWC for Bearing Fault Detection Steps 

• Initial Training on Baseline Data: We first then train our chosen neural network model 
on a simple baseline data set that comprises both healthy bearing data and data from the 
first type of fault. In the model’s diagnostic phase, it is trained to differentiate between 
normal and faulty states through parameters like max, min, mean, dev, root mean square, 
skewness, kurtosis, crest factor, and form factor. Skewness and kurtosis were selected be-
cause they provide valuable insights into the asymmetry and peakiness of the vibration 
signal, which are crucial for detecting abnormalities that may not be captured by other 
traditional statistical features. Skewness helps identify deviations from a normal distribu-
tion in the signal, which can point to irregular fault behavior. Kurtosis, on the other hand, 
indicates the presence of sharp peaks in the vibration signal, which are often associated 
with mechanical faults like cracks or wear in bearings. 

• Computation of Fisher Information Matrix: Once having learned on the baseline data set, 
we compute the Fisher Information Matrix (FIM) for the parameters of the tuned model. 
The FIM highlights the parameters used for defining the first failure conditions, making 
sure that these parameters are preserved during subsequent training.  

• Sequential Learning with EWC Regularization: The EWC algorithm retrains the model 
when new data in the form of different fault conditions are acquired by the model. We 
add the EWC regularization term to the loss function to confine the drastic change of 
learned parameters detected by the FIM. This is done in a way that enables the model to 
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update new fault patterns while it is capable of recognizing other faults that it has been 
trained on earlier. 

• Ongoing Model Evaluation: During the training phase, the model is tested through the 
use of the current as well as the previous database or data so as to test its efficiency in 
addressing all the possible fault conditions. That is how EWC contributes to the best/aver-
sion of the enhanced rate of new faults with the rates of knowledge retention. Therefore, 
applying the EWC algorithm adds to the methodology the ability to improve its perfor-
mance in the search for faults as well as guard against the threats posed by the process of 
continual learning. This approach ensures that we have developed a robust model that 
works in real-life applications where the condition of the bearing changes with time and 
may emerge new faults. The flowchart outlines the process for bearing fault detection us-
ing the proposed model with the EWC algorithm. It starts with the CWRU dataset, fol-
lowed by feature extraction to derive key signal characteristics. Next, the hyperparameters 
are adjusted to optimize the model. Afterward, model testing is performed to evaluate its 
performance, followed by model training to refine its fault detection capabilities. The re-
sulting accuracy is assessed to determine the model's effectiveness. Finally, the proposed 
model incorporating the EWC algorithm is implemented to enhance continual learning 
and fault detection. The process concludes with the end. Figure 6 illustrates this sequence. 

 
 

Figure 6: Flow chart for methodology. 

3.3.  Evaluation Metrics 
3.3.1.  Accuracy 
Accuracy is a fundamental metric for evaluating the success of classification algorithms. Accuracy 

is defined as the proportion of accurate forecasts to the total number of predictions made. You can 
determine the calculation using the following equation (1). 
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Accuracy =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                      (1) 

 
3.3.2.  Precision  
Precision can be defined as the proportion of correctly predicted true values to the total number 

of expected true values shown in equation (2). 
 

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                                   (2) 

 
3.3.3.  Recall 
Recall is a statistical measure that quantifies the proportion of correctly identified positive cases 

(true positives) relative to the total number of positive cases, including both correctly identified and 
incorrectly missed cases (false negatives). Accurate identification and classification of the actual posi-
tive cases determine the real positive rate of the model. Use the following in equation (3) to determine 
the calculation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                                    (3) 

3.3.4.  F1 Score 
When comparing two models with high recall but poor accuracy, or vice versa, it becomes chal-

lenging to determine which one is superior. In this scenario, adding the F1 score as a third element 
allows for a meaningful comparison to be shown in equation (4). 

 
                                           F1  = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
                                                      (4) 

 
True Positive (TP) denotes the quantity of instances in which the model accurately identifies the 

positive class. True Negative (TN) denotes the instances in which the model accurately identifies the 
negative class. A false positive (FP), or "Type I error," arises when the model erroneously classifies a 
negative instance as belonging to the positive class. A false negative (FN) occurs when the model does 
not identify a positive instance as belonging to the positive class.  Figure 7 illustrates the confusion 
matrix, which serves as an evaluation method for both binary and multiclass classification. 

 

Figure 7: Confusion matrix. 

4. Results  
That is why we decided to perform the full set of experiments to illustrate the applicability of the 

suggested model and check that the elastic EWC method is effective on the CWRU dataset. The aim 
was to fine-tune the EWC algorithm with significant parameters in an effort to achieve the most suc-
cessful results. In our technique, we started our training process with the basic training of 50 epochs. 
Any subsequent extension had to be measured against this; to this end, this session served as the control 
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point.  After the first run, we continued with enhancing the number of epochs up to 100 and then to 
150 in the following runs. The objective was to find out the effects of modifying the number of training 
cycles on the ability of the model to generalize as well as to recognize defect patterns in the data. Aside 
from these changes, the learning rate was adjusted and controlled, and a range of values from 0.001 to 
0.003 was used. By this we can also mean how fast the adjustment of the model is when the new input 
is given, and this is referred to as the learning rate. Hence, the learning rate used also needs to be ad-
justed to the best performance possible.  

The following are some of the observations obtained from the experimentation results shown in 
figure 8. We settled on a learning rate of 0. As discussed in the earlier section, while tuning the system 
for the first time, 002 always offered optimal results. Inspired by this, we performed additional experi-
ments, including this chosen learning rate, on various epoch configurations. 

Figure 8: Learning rate optimization for proposed method. 
 

These endeavors were paid off when it was found that the model yielded the best results with a 
particular setup of 100 epochs with a learning rate of 0.002. Such a setup, as indicated in figure 9 
(a)Training loss and (b) test accuracy across bellow, made it possible for the model to term an accuracy 
level of 97.06%. This result not only exhibits the proposed tuning process as useful for deriving more 
accurate emotion recognition models but also shows a marked improvement over prior technique. The 
level of achieved accuracy of 97. The other 06% amplifies the effectiveness of the proposed approach in 
solving the classification of faults according to the CWRU dataset 

                                             (a)                                                                             (b)  
 

Figure 9: (a) Training loss and (b) test accuracy across epochs. 
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A comprehensive report on the categorization of each fault type using the EWC Algorithm is in-
cluded in table 2, which includes metrics for Precision, Recall, and F1-Score. Notable faults that 
achieved perfect scores (precision, recall, and F1 score of 1.0) are IR_014_1, IR_021_1, and OR_007_1. 
The model exhibits exceptional performance across all kinds of defects. Because of this, it seems the 
EWC model may accurately identify some types of defects. A comprehensive report on the categoriza-
tion of each fault type using the EWC Algorithm is included in table 2, which includes metrics for 
Precision, Recall, and F1-Score. Notable faults that achieved perfect scores (precision, recall, and F1 
score of 1.0) are IR_014_1, IR_021_1, and OR_007_1. The model exhibits exceptional performance across 
all kinds of defects. Because of this, it seems the EWC model may accurately identify some types of 
defects. 

 
Table 2: Classification report of EWC algorithm. 

SN Fault Types Precision Recall F1-Score 

01 Ball_007_1 0.973684 0.986667 0.980132 

02 Ball_014_1 0.970149 0.866667 0.915493 

03 Ball_021_1 0.985294 0.893333 0.937063 

04 IR_007_1 0.986842 1.000000 0.993377 

05 IR_014_1 1.000000 1.000000 1.000000 

06 IR_021_1 1.000000 1.000000 1.000000 

07 Normal_1 0.974026 1.000000 0.986842 

08 OR_007_1 1.000000 1.000000 1.000000 

09 OR_014_1 0.848837 0.973333 0.906832 

10 OR_021_1 0.986667 0.986667 0.986667 

 
The EWC model's overall classification performance indicators are shown in table 3. The model is 

resilient and has balanced prediction performance across multiple fault classes, as shown by the accu-
racy of 97.07%, high precision of 97.25%, recall of 97.07%, and F1-Score of 97.06%. 

 
Table 3: The model analysis is proposed for all metrics. 

SN Metric Classification % 

01 Accuracy 0.9706666 

02 Precision 0.9725499 

03 Recall 0.9706667 

04 F1-Score 0.9706406 

 
5. Discussion 

A confusion matrix is a tabular form that accurately determines how well a machine learning 
model is performing in terms of classification, especially when the real values have been predeter-
mined. Figure 10 gives the results of the classification performance through a confusion matrix, which 
takes detailed results of the classification for many categories of faults. The matrix exhibits the ability 
of the model in predicting the actual labels, where all diagonal cells represent the number of instances 
that were correctly classified, while all the other cells are the instances that were misclassified. Addi-
tionally, the total scores of the predictions within the testing occurrences are compared to the total 
testing occurrences as well as the ratio they present as another criterion of measuring prediction preci-
sion of the model. When clearly presented, the confusion matrix also indicates the areas of the model 
that should be further improved on for the classification of faults.  
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Figure 10: Confusion matrix for fault classification performance. 
 

The EWC Algorithm shows a high level of competence to effectively detect fault types, according 
to tables 2 and 3. Classes like IR_014_1 and OR_007_1 have excellent accuracy, recall, and F1-Score, 
indicating that the model can reliably identify these errors without misclassification. To achieve equal 
sensitivity across all fault types, more tweaking may be necessary, nevertheless, since Ball_014_1 and 
OR_014_1 had somewhat lower scores. Table 3's total metrics confirm the model's high degree of gen-
eralizability with an accuracy of 97.07%. In figure 11 (a) Precision, (b) Recall, (c) F1 Score and (d) chart 
per class. we can see the metrics presented in tables 2 and 3 compared against one another for each 
defect category: Precision, Recall, and F1-Score. Supporting the model's dependability in fault catego-
rization, this chart illustrates its constant performance across diverse fault kinds. By highlighting the 
EWC model's efficacy and revealing avenues for improvement, small changes in individual categories 
reveal places where more tuning might improve overall accuracy and recall. 

                                              (a)                                              (b) 

  

                                                          (c)                                                                                                         (d) 
Figure 11: (a) Precision, (b) Recall and (c) F1 Score (d) chart per class. 
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Finally, table 4 displays the results of a performance comparison between the suggested system 
and a few cutting-edge methods. 

 
Table 4: Comparison with contemporary state of the art and pertinent studies. 

Ref Techniques Database Accuracy % 

 [44] DBN CWRU 84.2 

[45] DNN CWRU 94.4 

 [46] DWAE-ELM CWRU 95.20 

[47] WDCNN CWRU 95.9 

 [48] GAN-SDEA CWRU 96 

Proposed EWC CWRU 97.06 

 
5.1. Practical Diagnostic Performance Under 1-2 hp and 2-1 hp Load Conditions 
To assess the practical robustness and generalization ability of the proposed EWC-based fault di-

agnostic system, we conducted experimental testing under variable load conditions using a practical 
bearing fault data acquisition platform. A vibration sensor was placed on the DE of the bearing to collect 
signals under both intact and faulty conditions. The motor was operated at a load of 1-2 hp and 2-1, 
simulating real-world variations in operating conditions. In these practical tests, the EWC algorithm 
achieved a fault classification accuracy of 92.03 and 90.64, which, while lower than the 97.6% accuracy 
achieved under controlled experimental conditions, still demonstrates a strong capability to identify 
faults. The reduction in accuracy highlights the challenges posed by real-world variability, such as noise 
and signal inconsistencies, reinforcing the importance of further optimizing the model for practical de-
ployment in complex environments. Illustrates the diagnostic performance of under controlled condi-
tions and practical testing at figure 12 (a) 1-2 hp and (b) 2-1 hp loads. the diagnostic performance of the 
EWC algorithm under controlled conditions and practical testing with a 1-2 hp and 2-1 hp load. In 
figure 13, the chart highlights the reduction in accuracy when transitioning from controlled experi-
mental conditions to real-world scenarios, emphasizing the challenges posed by practical variability in 
fault detection tasks. 
 

(a)                                                                                                        (b) 
     
Figure 12: illustrates the diagnostic performance of under controlled conditions and practical testing at (a) 1-2 hp and (b) 2-1 hp 

loads. 
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Figure 13: Practical rolling bearing fault data acquisition platform. 

6. Conclusions 
This paper presents the development of a data-driven intelligent fault diagnostic system for the 

early identification of faults in deep groove ball bearings. We examined the experimental data to dis-
tinguish the defective bearing from the intact one, taking into account the extent of the fault. Also, 
obtained data during testing under quiet conditions and securely placed the base to prevent any self-
induced vibrations. The vibration analyzer's default computational tool transformed the picture data 
into numerical data. This study presents a method for effectively categorizing defects related to bear-
ings. We should emphasize that the particular dataset under examination and its attributes can greatly 
influence a classifier's effectiveness. Although some classifiers may exhibit subpar performance on a 
specific dataset, the ongoing rapid advancement in computer technology ensures that DL models will 
remain resilient and appealing instruments in machinery problem detection and diagnostic systems. 
This is the first research to use the EWC algorithm to identify rotating equipment failures in the CWRU 
dataset. Deep learning helped the EWC algorithm classify the CWRU dataset with 97.6% accuracy. This 
proves that the EWC algorithm can handle complex defect detection scenarios that need accuracy and 
knowledge preservation. EWC's success raises the standard for CWRU dataset fault diagnostics. 

The key limitation of this study is the lack of access to large industrial machinery for real-world 
testing. This restricts the validation of the proposed approach to experimental datasets, such as the 
CWRU dataset, and may not fully represent the challenges and variability encountered in actual indus-
trial environments. Future research should focus on testing the proposed method on larger machines 
and in operational settings to validate its robustness and scalability. Such efforts would help bridge the 
gap between experimental studies and practical applications, further advancing the reliability of data-
driven fault diagnostic systems. 
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