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1. Introduction 
Decision-making is the most important and inevitable aspect of the application of mathematical 

methods in various fields of human activity. In real-world situations, decisions are fuzzy, at least 
partly [1]. Optimization is a kind of decision-making in which decisions have to be taken to optimize 
one or more objectives under some prescribed set of circumstances. Fuzzy optimization is a method for 
dealing with the ambiguity and vagueness in uncertain parameters, represented by fuzzy elements, of 
which membership to a specific set is imprecise. One of the key benefits of fuzzy optimization is that it 
enables us to handle a wide range of uncertainties in the problem structure, such as the variability in 
the decision maker’s aspiration level regarding the objectives, the variability in the range of coeffi-
cients of the objective function(s) and constraints, and the uncertainty in the satisfaction level of con-
straints, in contrast to the robust optimization approach, which captures the uncertainty in only pa-
rameters [2]. The Fuzzy Linear Programming (FLP) problem is the classical Linear Programming 
(LP)problem to find the (maximum & minimum) values of linear function under constraints repre-
sented by linear inequalities or equations [3].  

This paper concentrates on addressing FLP problems featuring inequality constraints, where the 
coefficients of the objective function 𝑐𝑐𝑗𝑗, the right-hand side 𝑏𝑏𝑖𝑖,as well as coefficients of constraints 𝑎𝑎𝑖𝑖𝑗𝑗, 
involve fuzzy numbers. The proposed method relies on the utilization of Maleki, Campos, Yager’s F1, 
and Yager linear RFs, offering a straightforward and practical approach to deal with the intricacies 
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arising from fuzzy parameters. The simplicity and applicability of these methods make them advan-
tageous compared with existing techniques for handling FLP problems encountered in practical con-
texts. Many practical problems involving uncertainty can be effectively modeled as mathematical 
problems, demonstrating the broad applicability of the proposed methods. The paper supports its 
methodology by presenting numerical examples, where obtained results are thoroughly analyzed and 
discussed, showcasing the effectiveness and utility of the proposed approach in real-world prob-
lem-solving situations. 

2. Literature Review  
Multiple studies have been presented about FLP. A lot of application problems can be modeled as 

mathematical problems that may be formulated with uncertainty. The concept of FLP was first pro-
posed by Zimmerann. Therefore, he is recognized as the pioneer of FLP, a concept that has seen sub-
sequent developments in the field [3, 4]. Notable advancements include the application of LP with 
fuzzy parameters in industrial production planning, as investigated by Vansant al. [5]. 

Maleki [6] introduces the incorporation of fuzzy variables into LP problems and proposes a novel 
solving approach employing ranking functions (RFs). Pandian and Jayalakskmi [7] present a technique 
tailored for solving integer LP problems with fuzzy variables. Expanding on previous information, 
Pandian and Jayalakshmi introduce a specialized method designed to tackle integer LP problems that 
involve fuzzy variables. This technique represents a significant advancement in addressing optimiza-
tion challenges where decision variables are characterized by fuzzy values. This may involve incor-
porating fuzzy logic principles to model imprecise or uncertain information, thereby enabling more 
realistic and robust optimization solutions.  

Singh [8] introduces an innovative method for addressing fully FLP problems, employing RFS. 
Dheyab [9] extends the scope to fuzzy fractional LP problems, also utilizing RFs. Hashem [10] intro-
duces a distinctive method by representing decision-makers using nonsymmetrical trapezoidal fuzzy 
numbers (TrFNs) and solving problems through RFs. These diverse contributions collectively enhance 
the methodology and applicability of FLP across various problem types and domains. 

3. Materials and Methods 
We present a summary of crucial concepts and principles originating from fuzzy set theory. This 

serves as a foundation for the subsequent discussions, offering a clear understanding of the theoretical 
framework involved, including: 

3.1. Membership Function 
    This introduces the defining function, denoted as 𝜇𝜇𝐴𝐴, assigning 0 or 1 to each element in the crisp 
set A⊆X. This function extends to (𝜇𝜇𝐴𝐴�) with values ranging from 0 to 1, denoting the membership 
grade of each 𝑥𝑥 ∈ 𝑋𝑋. It is commonly known as the membership function (𝜇𝜇𝐴𝐴�), which defines a fuzzy 
set�̃�𝐴 = {( 𝑋𝑋, 𝜇𝜇𝐴𝐴�);  𝑥𝑥 ∈ 𝑋𝑋}, with𝜇𝜇𝐴𝐴�  defining the membership grade for each 𝑥𝑥 ∈ 𝑋𝑋. For every x ∈ X, the 
value assigned by𝜇𝜇𝐴𝐴�is termed the membership grade of x in �̃�𝐴[11, 12]. 

3.1.1.Notation 
    When X is the set consists of a limited or countable number of elements {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, a fuzzy of 
set �̃�𝐴on 𝑋𝑋 can be represented as: 
 

��̃�𝐴� = 𝜇𝜇𝐴𝐴�(𝑥𝑥1)/𝑥𝑥1 + 𝜇𝜇𝐴𝐴�(𝑥𝑥2)/𝑥𝑥2 + ⋯ . +𝜇𝜇𝐴𝐴�(𝑥𝑥𝑛𝑛)/𝑥𝑥𝑛𝑛 = ∑ 𝜇𝜇𝐴𝐴� (𝑥𝑥𝑖𝑖) /𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1                    (1) 

 
In this expression, the notation 𝜇𝜇𝐴𝐴� (𝑥𝑥𝑖𝑖)  where, 𝑖𝑖 = 1,2, . . . ,𝑛𝑛  indicates that μi  is the membership 
grade of 𝑥𝑥iin �̃�𝐴, and the plus sign signifies the union operation . 
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When 𝑋𝑋 is not finite, we write:  
 

�̃�𝐴 =  ∫ 𝜇𝜇𝐴𝐴�
( 𝑥𝑥)
𝑥𝑥

                                                                                              ⬚
𝑥𝑥 (2) 

 
3.2. Support 
The support of a fuzzy set 𝐴𝐴, is the crisp set of all 𝑥𝑥 ∈ 𝑋𝑋 such that 𝜇𝜇𝐴𝐴 (𝑥𝑥) > 0[12, 13]; see Figure 

1: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴) =  {𝑥𝑥 ∈  𝑋𝑋 ∶  𝜇𝜇𝐴𝐴 (𝑥𝑥)  >  0}                    (3) 

 
 

3.3.Core 
The central region of A�  comprises the points 𝑥𝑥 in 𝑋𝑋 where μA�  (x) equals 1; see Figure 1. 

Symbolically, this core is denoted as [12]: 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝐴𝐴) =  {(𝑥𝑥, 𝜇𝜇𝐴𝐴� (𝑥𝑥))/𝜇𝜇𝐴𝐴� (𝑥𝑥) = 1}                    (4) 

 
3.4. Normality 
A� is termed Normal if cor(A) ≠ ∅, meaning there exists at least one point x ∈ X where μA�  (x) 

equals 1 [12]. 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Core, support and boundary of a membership function representation. 
 
3.5.𝝀𝝀-cut 
The 𝜆𝜆 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (or 𝜆𝜆 − 𝑐𝑐𝑆𝑆𝑐𝑐) set of a fuzzy set �̃�𝐴is a crisp set denoted by 𝜇𝜇𝐴𝐴�(𝜆𝜆),which is defined 

as: 
 

�̃�𝐴𝜆𝜆 = {  𝑥𝑥 ∈ 𝑋𝑋 / 𝜇𝜇𝐴𝐴�(𝑥𝑥) ≥ 𝜆𝜆 }                    (5) 

 
Therefore, the strong 𝜆𝜆-cut is: 

 

�̃�𝐴𝜆𝜆 = {  𝑥𝑥 ∈ 𝑋𝑋 / 𝜇𝜇𝐴𝐴�(𝑥𝑥) > 𝜆𝜆 }                    (6) 

 
Where “𝐴𝐴” is a crisp set; see Figure 2 for an illustration of the strong 𝜆𝜆-cut[13]. 
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Figure 2: Illustration of the strong 𝜆𝜆 − 𝑐𝑐𝑆𝑆𝑐𝑐 of a fuzzy set �̃�𝐴. 
 
 

3.6. Convex 
A fuzzy set.�̃�𝐴 on the real line is deemed convex if ∃ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, and 𝜆𝜆 ∈ [0,1]. The following 

condition holds:    

𝜇𝜇𝐴𝐴�( 𝜆𝜆𝑥𝑥 + (1 −   𝜆𝜆)𝑦𝑦) ≥  𝑀𝑀𝑖𝑖𝑛𝑛 {𝜇𝜇𝐴𝐴� (𝑥𝑥), 𝜇𝜇𝐴𝐴� (𝑦𝑦)}                    (7) 

 
• A fuzzy set achieves convexity if, and only if, every 𝜆𝜆 − 𝑐𝑐𝑆𝑆𝑐𝑐 it possesses demonstrates 

convexity. This observation underscores a crucial attribute of convex fuzzy sets, wherein 
each 𝜆𝜆 − 𝑐𝑐𝑆𝑆𝑐𝑐 , representing a horizontal slice of the set across its domain, exhibits 
convexity. This property is significant, as it ensures a smooth and continuous transition 
in the membership degrees across different elements of the set, contributing to a 
coherent and well-defined representation of uncertainty or imprecision. 

• �̃�𝐴 is characterized as an uncertain set on the real number line that at its core is not empty. 
Convexity signifying that all of its x-cuts demonstrate convexity [12, 13]. 

 
3.7.Triangular Fuzzy Number 
A fuzzy set, �̃�𝐴  =  (𝑎𝑎,𝛼𝛼,𝛽𝛽), is referred to as a triangular fuzzy number (TFN) with a center 𝑎𝑎 , 

left width 𝛼𝛼 and right width 𝛽𝛽 if its 𝜇𝜇𝐴𝐴�(𝑥𝑥) is characterized by the following form: 
 

𝜇𝜇𝐴𝐴�(𝑥𝑥) = �
1 −  (𝑎𝑎−𝑥𝑥)

𝛼𝛼
𝑎𝑎 − 𝛼𝛼 ≤ 𝑥𝑥 ≤ 𝑎𝑎

1 −  (𝑥𝑥−𝑎𝑎)
𝛽𝛽

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑎𝑎 + 𝛽𝛽
0 𝑐𝑐.𝑤𝑤

�                    (8) 

 
The TFN is established upon a three-value assessment: the minimum possible value denoted as 

𝑎𝑎 − 𝛼𝛼, the most probable value represented by 𝑎𝑎, and the maximum possible value indicated as 𝑎𝑎 +
𝛽𝛽[7, 11]. 
 
 
 
 
 
 
 
 
 
 

Figure 3: Depicts a triangular fuzzy number �̃�𝐴 = (𝑎𝑎,𝛼𝛼,𝛽𝛽). 
 

The concept of a TFN is rooted in a three-value assessment, where each value represents 𝑎𝑎 
distinct aspect of uncertainty. Specifically, it comprises the minimum possible value, denoted as  𝑎𝑎 −
𝛼𝛼, which signifies the lower bound; the most probable value, represented by 𝑎𝑎, which indicates the 

𝜆𝜆-cut 

𝜆𝜆 
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peak or center of the distribution; and the maximum possible value, indicated as 𝑎𝑎 + 𝛽𝛽, serving as the 
upper bound. Together, these three values form the foundation of the TFN, enabling a nuanced 
representation of uncertainty or imprecision within a given context.  
 

3.8.Trapezoidal Membership Function 
A TrFN A� is defined by four parameters, which delineate its shape and characteristics within 

the fuzzy set framework: 
Alower bound a𝑙𝑙, an upper bound a𝑢𝑢, and the two shape parameters α and β. Its membership 
function is as follows [14, 15]: 
 

𝜇𝜇𝐴𝐴�(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 1 −  �𝑎𝑎

𝑙𝑙 −𝑥𝑥�
𝛼𝛼

             ,𝑎𝑎𝑙𝑙  −  𝛼𝛼 ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑙𝑙

1                                      ,𝑎𝑎𝑙𝑙  ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑢𝑢

1 −  (𝑥𝑥 −𝑎𝑎𝑢𝑢)
𝛽𝛽

              ,𝑎𝑎𝑢𝑢   ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑢𝑢  + 𝛽𝛽
    0                               ,𝑂𝑂.𝑊𝑊                       ⎭

⎪
⎬

⎪
⎫

                    (9) 

 
 
 
 
 
 
 
 
 
 

Figure 4: Shows Trapezoidal fuzzy number �̃�𝐴 = (𝑎𝑎𝑙𝑙 , 𝑎𝑎𝑢𝑢 ,𝛼𝛼,𝛽𝛽). 
 
 
1. Drawing from the characteristics of TFNs and TrFNs, it becomes clear that a TFN is a particular 

instance of a TrFN, specifically where, if a𝑙𝑙 equals a𝑢𝑢, the fuzzy number is identified as a TFN. 
2. If α  equals β, the TrFN is referred to as a symmetric. 
3. A TrFN �̃�𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢,α,β) can be characterized by its support (𝑎𝑎𝑙𝑙 − α,𝑎𝑎𝑢𝑢 + β), and its core [𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢]. 
4. Considering A� = �al, au,α,β� and B� = �bl, bu, γ, θ� two TrFNs, the following arithmetic operations 

must be verified [15, 16, 17]: 
a. Image of �̃�𝐴 is:  − �̃�𝐴 = (−𝑎𝑎𝑢𝑢,−𝑎𝑎𝑙𝑙 ,β,α)        (10) 
b. Addition: �̃�𝐴 + 𝐵𝐵� = (𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑙𝑙 ,𝑎𝑎𝑢𝑢  + 𝑏𝑏𝑢𝑢 ,α + γ,β + θ)               (11) 
c. Subtraction: �̃�𝐴 − 𝐵𝐵� = (𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑢𝑢, 𝑎𝑎𝑢𝑢 − 𝑏𝑏𝑙𝑙  , α + θ,β + γ)     (12) 
d. Scalar Multiplication: 

if 𝑥𝑥 ≥ 0, 𝑥𝑥�̃�𝐴 = (𝑥𝑥𝑎𝑎𝑙𝑙 ,  𝑥𝑥𝑎𝑎𝑢𝑢, xα, xβ)       (13) 

If 𝑥𝑥 ≤ 0, 𝑥𝑥�̃�𝐴 = (𝑥𝑥𝑎𝑎𝑢𝑢,  𝑥𝑥𝑎𝑎𝑙𝑙 ,−xβ, −, xα)     (14) 

 
3.9. Ranking Function 
The use of RFs is indeed a common approach in handling fuzzy numbers to establish a mean-

ingful order or ranking. These functions help in comparing and ordering fuzzy numbers, which is 
essential in decision-making processes where uncertainty is involved. The RF is represented by F(R), 
where 𝑅𝑅: 𝐹𝐹(𝑅𝑅).→ 𝑅𝑅, and F(R) denotes the set of fuzzy numbers defined on a real line, where a natural 
order prevails. Various kinds of RFs have been introduced in research, each offering distinct benefits 
and practical uses. These functions are designed to offer a structured approach for comparing and 
arranging fuzzy numbers, considering both their membership and nonmember ship values. In the 
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context of LP with fuzzy parameters, RFs play a crucial role in converting fuzzy constraints or objec-
tives into crisp ones, facilitating traditional application [18, 19, 20, 21]. 
In the context of LP techniques, let �̃�𝐴 and 𝐵𝐵�  represent two TrFNs. The RF 𝐹𝐹(𝑅𝑅)  follows the follow-
ing rules: 

If 𝑨𝑨� ≥ 𝑩𝑩� , then 𝑹𝑹(𝑨𝑨�) ≥ 𝑹𝑹(𝑩𝑩�)       (15) 

If 𝑨𝑨� > 𝑩𝑩� , then 𝑹𝑹(𝑨𝑨�) > 𝑹𝑹(𝑩𝑩�)     (16) 

If 𝑨𝑨� = 𝑩𝑩� , then 𝑹𝑹(𝑨𝑨�) = 𝑹𝑹(𝑩𝑩�)     (17) 

 
Additionally, �̃�𝐴 − 𝐵𝐵� = 0, if and only if 𝑅𝑅(�̃�𝐴) − 𝑅𝑅(𝐵𝐵�) = 0,  where �̃�𝐴 and 𝐵𝐵�  are in 𝐹𝐹(𝑅𝑅). 

 
Lemma: For any RF, the following statements hold: 
 
1. �̃�𝐴 ≥ 𝐵𝐵�  if and only if �̃�𝐴 − 𝐵𝐵� ≥ 0 if and only if − 𝐵𝐵� ≥  − �̃�𝐴 
2. If �̃�𝐴 ≥ 𝐵𝐵�  and �̃�𝐶 ≥ 𝐷𝐷� then �̃�𝐴  +  �̃�𝐶 ≥ 𝐵𝐵�  +  𝐷𝐷� 
 

In this paper, we focus our use on Maleki, Campos, Yager’s F1, and Yager RFs, Therefore, we 
limit the explanation to these functions only : 
 

3.9.1. Maleki Ranking Function 
The Maleki RF is a method used in fuzzy logic to rank fuzzy numbers. It was introduced by 

Maleki in a paper titled "A new ranking method for fuzzy numbers based on left and right areas."The 
Maleki RF is based on the idea of comparing the areas to the left and right of each fuzzy number's 
graph. The basic principle is that a fuzzy number with a larger area to its left and a smaller area to its 
right should be ranked higher than fuzzy numbers with different area distributions [6, 22, 23]. 
Therefore, let �̃�𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢,α,β) be a TrFN, then the RF is:  
 

𝑅𝑅(�̃�𝐴) =  ∫ (𝑖𝑖𝑛𝑛𝑖𝑖�̃�𝐴λ + 𝑠𝑠𝑆𝑆𝑆𝑆�̃�𝐴λ)𝑑𝑑1
0 λ                          (18) 

This reduces to: 

𝑅𝑅��̃�𝐴� =  𝑎𝑎𝑙𝑙 + 𝑎𝑎𝑢𝑢  +  1
2

(𝛽𝛽 –  𝛼𝛼)                                                       (19) 

 
Remark:   𝑅𝑅(�̃�𝐴) =  𝑎𝑎𝑙𝑙 + 𝑎𝑎𝑢𝑢, where �̃�𝐴 be symmetric TrFN [24, 25]. 
 

3.9.2. Campos Ranking Function 
The Campos RF is another method used in fuzzy logic to rank fuzzy numbers. It was introduced 

by Campos et al. in their paper titled "A new ranking method for fuzzy numbers based on similarity 
measure." 
 
Let �̃�𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢,α,β) be a TrFN, then the ranging function is: 
 

𝑅𝑅��̃�𝐴� = 𝑎𝑎𝑙𝑙 + λ �(𝑎𝑎𝑢𝑢 − 𝑎𝑎𝑙𝑙)  + ((𝑎𝑎𝑙𝑙− 𝛼𝛼) + (𝑎𝑎𝑢𝑢 +𝛽𝛽)
3

� −  (𝑎𝑎𝑙𝑙− 𝛼𝛼)
3

                     (20) 

 
The parameter 𝜆𝜆, which belongs to the interval [0,1], can be understood as a measure of optimism or 
pessimism that the decision-maker must choose. A value close to 1 suggests an optimistic perspective, 
while a value close to 0 implies a pessimistic viewpoint. 
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3.9.3. Yager’s F1 Ranking Function 
Yager's F1 RF is a method used to rank fuzzy numbers introduced by Ronald R. Yager, a 

prominent figure in the field of fuzzy logic and decision-making. The function is part of a family of 
RFs proposed by Yager.The F1 RF is designed to rank fuzzy numbers based on their centroid values. 
The centroid of a fuzzy number represents a measure of its "center of mass" or "average" value. The 
idea is that fuzzy numbers with higher centroid values are ranked higher than those with lower 
centroid values. 
Let �̃�𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢,α,β) represent a TrFN. The RF is specified as follows [26]: 
 

𝑅𝑅(�̃�𝐴) =  1
3
�
�(𝑎𝑎𝑢𝑢)2 − �𝑎𝑎𝑙𝑙�

2
� + �(𝑎𝑎𝑢𝑢 + β )2 −  (𝑎𝑎𝑙𝑙 − α )2� + �𝑎𝑎𝑢𝑢 .  (𝑎𝑎𝑢𝑢 + β ) −  𝑎𝑎𝑙𝑙 .�𝑎𝑎𝑙𝑙 − α��

�𝑎𝑎𝑢𝑢 − 𝑎𝑎𝑙𝑙� + �(𝑎𝑎𝑢𝑢 + β) − �𝑎𝑎𝑙𝑙 − α��
�  (21) 

 
3.9.4. Yager Ranking Function: 
Let �̃�𝐴 = (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑢𝑢,α,β) represent a TrFN. The RF is specified as follows [26]:  

 

𝑅𝑅��̃�𝐴� =  
�∫ �𝑎𝑎𝑙𝑙− 𝛼𝛼𝐿𝐿−1(λ)�𝑑𝑑1
0 λ +∫ �𝑎𝑎𝑈𝑈 + 𝛽𝛽𝑅𝑅−1(λ)�𝑑𝑑1

0 λ�

2
                                      (22) 

 

This reduces to:   

𝑅𝑅(�̃�𝐴) =  
�𝑎𝑎𝑙𝑙+𝑎𝑎𝑢𝑢− 45α +23β�

2
(23) 

 
3.10. Fuzzy linear programming: 
A standard formulation of crisp LP is expressed as: 

 

Maximize or minimize 𝑧𝑧 =  ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1  

Such that:  

∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1 ≤  𝑏𝑏𝑖𝑖     , 𝑖𝑖 = 1,2, . ,𝑚𝑚       𝑥𝑥𝑗𝑗 ≥ 0                       (24) 

 
where 𝑐𝑐𝑗𝑗 ∈ 𝑅𝑅𝑛𝑛, 𝑏𝑏𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑖𝑖𝑗𝑗 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚 
 

In the context of FLP, the conventional crisp parameters in the LP model are replaced with fuzzy 
numbers. This transforms the crisp LP model into a FLP model.The study concentrates on tackling 
FLP problems with inequality constraints, where the parameters cȷ�, bı� , and a�ij  are represented as 
fuzzy numbers. This scenario is deemed the most complex among other possibilities, as uncertainties 
are pervasive in each of these parameters. Following this, we proceed to tackle the FLP problem 
utilizing different RFs: 

 
a- When applying the Maleki RF, the LP problem assumes a distinct form: 

 

𝑀𝑀𝑎𝑎𝑥𝑥𝑐𝑐𝑐𝑐𝑀𝑀𝑖𝑖𝑛𝑛𝑧𝑧 =  �[𝑐𝑐𝑗𝑗𝑙𝑙 + 𝑐𝑐𝑗𝑗𝑢𝑢 +
1
2

(β − α)]  𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

 
Such that:  

∑ [𝑎𝑎𝑖𝑖𝑗𝑗𝑙𝑙 + 𝑎𝑎𝑖𝑖𝑗𝑗𝑢𝑢 + 1
2

(β − α)]𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1 ≤  �𝑏𝑏𝑖𝑖

𝑙𝑙 + 𝑏𝑏𝑖𝑖
𝑢𝑢 + 1

2
(β − α)� , 𝑖𝑖 = 1,2, . . . ,𝑚𝑚,𝑥𝑥𝑗𝑗 ≥ 0 (25) 
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b- When applying the Campos RF, the LP problem assumes a distinct form: 

 

𝑀𝑀𝑎𝑎𝑥𝑥𝑐𝑐𝑐𝑐𝑀𝑀𝑖𝑖𝑛𝑛𝑧𝑧 = �[𝑐𝑐𝑗𝑗𝑙𝑙  + 𝜆𝜆 ��𝑐𝑐𝑗𝑗𝑢𝑢 − 𝑐𝑐𝑗𝑗𝑙𝑙� + 
(𝑐𝑐𝑗𝑗𝑙𝑙  −  α )  + (𝑐𝑐𝑗𝑗𝑢𝑢  +  β )

3
� −  

�𝑐𝑐𝑗𝑗𝑙𝑙  −  α�
3

]  𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

 
      Such that:  
 

∑ [ 𝑎𝑎𝑖𝑖𝑗𝑗𝑙𝑙 + 𝜆𝜆 ��𝑎𝑎𝑖𝑖𝑗𝑗𝑢𝑢 −  𝑎𝑎𝑖𝑖𝑗𝑗𝑙𝑙� + 
(𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 − α ) + (𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + β )

3
� −  

�𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 − α�

3
]𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1 ≤ �𝑏𝑏𝑖𝑖
𝑙𝑙  + 𝜆𝜆 ��𝑏𝑏𝑖𝑖

𝑢𝑢 − 𝑏𝑏𝑖𝑖
𝑙𝑙� +

 (𝑏𝑏𝑖𝑖
𝑙𝑙 − α ) + (𝑏𝑏𝑖𝑖

𝑢𝑢 + β )
3

� −   
�𝑏𝑏𝑖𝑖

𝑙𝑙 − α�

3
�   , 𝑖𝑖 = 1,2, . . . ,𝑚𝑚𝑥𝑥𝑗𝑗 ≥ 0   and 𝜆𝜆 ∈  [0,1] (26) 

 
c- When employing Yager’s F1 RF, the LP problem adopts a specific form: 
 

𝑀𝑀𝑎𝑎𝑥𝑥𝑐𝑐𝑐𝑐𝑀𝑀𝑖𝑖𝑛𝑛𝑧𝑧 =  �
1
3

𝑛𝑛

𝑗𝑗=1
��
��𝑐𝑐𝑗𝑗𝑢𝑢�

2  −  �𝑐𝑐𝑗𝑗𝑙𝑙�
2�  +  ��𝑐𝑐𝑗𝑗𝑢𝑢  +  β �2  −   (𝑐𝑐𝑗𝑗𝑙𝑙  −  α )2�

�𝑐𝑐𝑗𝑗𝑢𝑢  −  𝑐𝑐𝑗𝑗𝑙𝑙�  +  ��𝑐𝑐𝑗𝑗𝑢𝑢  +  β�  −  �𝑐𝑐𝑗𝑗𝑙𝑙  −  α��
�  

+  �
�𝑐𝑐𝑗𝑗𝑢𝑢 .  �𝑐𝑐𝑗𝑗𝑢𝑢  +  β �  −   𝑐𝑐𝑗𝑗𝑙𝑙 . �𝑐𝑐𝑗𝑗𝑙𝑙  −  α��

�𝑐𝑐𝑗𝑗𝑢𝑢  −  𝑐𝑐𝑗𝑗𝑙𝑙�  +  ��𝑐𝑐𝑗𝑗𝑢𝑢  +  β�  −  �𝑐𝑐𝑗𝑗𝑙𝑙  −  α��
�� 𝑥𝑥𝑗𝑗 

 
Such that:  

∑ 1
3
��

��𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢�
2 − �𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙�

2
� + ��𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + β �

2 −  �𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙−𝛼𝛼�
2
�

�𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙� + ��𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + β� − �𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 − α��
� + �

�𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 .  �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + β � −  𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 .�𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 − α��

�𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙� + ��𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + β� − �𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 − α��
��𝑛𝑛

𝑗𝑗=1 𝑥𝑥𝑗𝑗 ≤

1

3
�
�(𝑏𝑏𝑖𝑖𝑆𝑆)2 − �𝑏𝑏𝑖𝑖𝑙𝑙�

2
�+ �(𝑏𝑏𝑖𝑖𝑆𝑆+β )2 − (𝑏𝑏𝑖𝑖

𝑙𝑙 − α )
2
�+�𝑏𝑏𝑖𝑖𝑆𝑆 .  (𝑏𝑏𝑖𝑖𝑆𝑆 + β ) − 𝑏𝑏𝑖𝑖

𝑙𝑙 .�𝑏𝑏𝑖𝑖𝑙𝑙 − α��

�𝑏𝑏𝑖𝑖𝑆𝑆 − 𝑏𝑏𝑖𝑖
𝑙𝑙� + �(𝑏𝑏𝑖𝑖𝑆𝑆 + β) − �𝑏𝑏𝑖𝑖𝑙𝑙 − α��

�, i= 1,2,……,m.(27)𝑥𝑥𝑗𝑗 ≥ 0 

 
d- When employing the Yager RF, the LP problem adopts a specific form: 

𝑀𝑀𝑎𝑎𝑥𝑥𝑐𝑐𝑐𝑐𝑀𝑀𝑖𝑖𝑛𝑛𝑧𝑧 = �
1
2
�𝑐𝑐𝑗𝑗𝑙𝑙 + 𝑐𝑐𝑗𝑗𝑢𝑢  −  

4
5
α +

2
3
β� 𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

 
Such that:  

∑ 1
2
�𝑎𝑎𝑖𝑖𝑗𝑗𝑙𝑙 + 𝑎𝑎𝑖𝑖𝑗𝑗𝑢𝑢  −  4

5
α + 2

3
β� 𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1 ≤  1
2
�𝑏𝑏𝑖𝑖

𝑙𝑙 +    𝑏𝑏𝑖𝑖
𝑢𝑢  −  4

5
α + 2

3
β�     , 𝑖𝑖 = 1,2, . . . ,𝑚𝑚𝑥𝑥𝑗𝑗 ≥ 0    (28) 

 
These functions are designed to offer a structured approach for systematically comparing and 

arranging fuzzy numbers, taking into account both their membership and nonmembership. In the 
context of LP with fuzzy parameters, RFs play a crucial role in converting fuzzy constraints or 
objectives into crisp ones, facilitating the application of traditional LP techniques.  
After formulating these FLP problems, the next step typically involves applying appropriate solution 
methodologies or algorithms to solve them, considering the inherent uncertainties in the problem data. 
These solution methodologies might involve fuzzy optimization techniques, RFs, or other approaches 
specifically designed for handling FLP problems. 
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3.11. Algorithm for Solution FLP PROBLEM with Ranking Function 
Within this section, a new approach is utilized to find the optimal solution for the specified type 

of FLP problem: 
 

𝑀𝑀𝑎𝑎𝑥𝑥 (𝑐𝑐𝑐𝑐𝑀𝑀𝑖𝑖𝑛𝑛 ) (�̃�𝐶𝑇𝑇  ⨂ 𝑋𝑋) 
 

Such that: 

�̃�𝐴 ⨂ 𝑋𝑋 ≤  𝐵𝐵� ,                   (29) 

 
𝑋𝑋 is a non-negative fuzzy value. 
 
The steps outlined in the proposed approach are as follows: 

• Step 1: Given the FLP problem with inequality constraints, where the cȷ�, bı� , and a�ij are 
representedas fuzzy numbers, we substitute such values into the problem formulation: 
�̃�𝐶𝑇𝑇 = [�̃�𝐶𝑗𝑗]1×𝑛𝑛,  �̃�𝐴 = [𝑎𝑎�𝑖𝑖𝑗𝑗]𝑚𝑚×𝑛𝑛 and 𝐵𝐵� = [𝑏𝑏�𝑖𝑖]𝑚𝑚×1, as defined in Section (3.10). 

• Step 2: Utilizing the RF as defined in Section (3.9) and the FLP framework outlined in Section 
(3.10), convert the problem into a crisp LP problem. 

• Step 3: Subsequently, we determine the optimal solution of the obtained crisp LP problem 
using known methods. 

4. Results 
The manufacturing process involves three products, namely P1, P2, and P3, which undergo 

processing across four distinct machines: M1, M2, M3, and M4. The time intervals needed to produce 
a single unit of each product and the daily capabilities of the machines is as follows: 
 
 

Table 1: Data of time requred of each product and daily capacity of the machines. 
Time Needed per unit (in minutes) 

Machines P1 P2 P3 
M1 12 16 2 3 13 16 2 1 12 16 3 5 
M2 14 20 2 2 …………………………… 13 18 2 3 
M3 12 17 3 2 15 20 2 3 ………………………… 
M4 15 18 2 3 14 17 2 1 16 18 2 2 

Ptrofit/Rs 13 15 2 2 12 14 3 2 15 18 3 2 
 

Table 2: Daily capacity of the machines. 

Machine Capasity (min/day) 

Capasity 

M1 490 510 9 8 

M2 470 490 10 6 

M3 480 505 7 8 

M4 388 425 5 8 

 
It is worth noting that daily time availability may vary due to factors like machine breakdowns 

or overtime work, while profit margins for each product can fluctuate based on price changes. 
However, the company aims to maintain profits near: Rs.14 for P1, Rs.13 for P2, and Rs.16 for P3. 
The objective is to determine the optimal production quantities for each product per day, maximizing 
overall profit. All produced quantities are assumed to be sold in the market. 
Given the uncertainty in both product profits and machine time availability, determining production 
quantities becomes uncertain. Thus, we choose to model the problem as a FLP problem, using TrFNs 
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to represent uncertain values. For instance, the profit for P1, approximately 14, is represented as [13, 
15, 2, 2]. Similarly, other parameters are depicted as symmetric TrFNs, considering the problem's 
characteristics and any additional requirements. Consequently, we formulate the FLP problem as 
follows: 
 
Let us define the decision variables: 

𝑥𝑥1: the quantity of Product 1 (P1) to manufacture per day 
𝑥𝑥2: the amount of Product 2 (P2) to produce daily 
𝑥𝑥3: the volume of Product 3 (P3) to manufacture each day 

The objective is to maximize profit, considering the variability in profit for each product. We will aim 
to keep the profit close to the target values: 
 

𝑀𝑀𝑎𝑎𝑥𝑥𝑧𝑧 = (13,15,2,2)𝑥𝑥1 + (12,14,3,2)𝑥𝑥2 + (15,18,3,2)𝑥𝑥3 

 
Subject to:   

(12,16,2,3)𝑥𝑥1 + (13,16,2,1)𝑥𝑥2 + (12,16,3,4)𝑥𝑥3 ≤ (490,510,9,8) 
(14,20,2,2)𝑥𝑥1 + (13,18,2,3)𝑥𝑥3 ≤ (470,490,10,6) 
(12,17,3,2)𝑥𝑥1 + (15,20,2,3)𝑥𝑥2 ≤ (480,505,7,8) 

(13,15,2,2)𝑥𝑥1 + (12,14,3,2)𝑥𝑥2 + (15,18,3,2)𝑥𝑥3 ≤ (388,425,5,8) 
𝑥𝑥𝑖𝑖 ≥ 0,              𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖 = 1,2,3 

 
So, by using RFs to convert fuzzy numbers into crisp values, you can solve the resulting crisp LP 

problem to obtain an optimal solution that considers the uncertainties present in the original fuzzy 
problem. 

 
a. Using the proposed method (Maleki RF), the aforementioned FLP problem is transformed into the 

following crisp LP: 
 

𝑀𝑀𝑎𝑎𝑥𝑥𝑧𝑧 = 28𝑥𝑥1 + 25.5𝑥𝑥2 + 32.5𝑥𝑥3 

Subject to:  

28.5𝑥𝑥1 + 28.5𝑥𝑥2 + 28.5𝑥𝑥3 ≤ 999.5 

34𝑥𝑥1 + 31.5𝑥𝑥3 ≤ 958 

28.5𝑥𝑥1 + 35.5𝑥𝑥2 ≤ 985.5 

33.5𝑥𝑥1 + 30.5𝑥𝑥2 + 34𝑥𝑥3 ≤ 814.5 

𝑥𝑥𝑖𝑖 ≥ 0,              𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖 = 1,2,3 

 
The optimal solution for the above LP is as follows: (x1 = 0, x2 = 0, x3 = 23.96, and z = 778.57). 
 

b. Using the proposed method (Campos RF), when 𝜆𝜆 = 0.5, the aforementioned FLP problem is 
transformed into the following crisp LP: 

𝑀𝑀𝑎𝑎𝑥𝑥𝑧𝑧 = 17.83𝑥𝑥1 + 16.5𝑥𝑥2 + 18𝑥𝑥3 

Subject to:  

15.5𝑥𝑥1 + 15.5𝑥𝑥2 + 15.8𝑥𝑥3 ≤ 506 

18.7𝑥𝑥1 + 17.2𝑥𝑥3 ≤ 486 

16.2𝑥𝑥1 + 19.2𝑥𝑥2 ≤ 499 

17.8𝑥𝑥1 + 16.5𝑥𝑥2 + 18𝑥𝑥3 ≤ 415 

𝑥𝑥𝑖𝑖 ≥ 0,              𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖 = 1,2,3 
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The optimal solution for the above LP is as follows: (x1 = 23.31, x2 = 0, x3 = 0, and z = 415.7). It is 

worth noting that, we can test all values of parameter λ, which belongs to the interval [0,1]. 
 

c. Using the proposed method (Yager’s F1 RF), the aforementioned FLP problem is transformed into 
the following crisp LP: 
 

𝑀𝑀𝑎𝑎𝑥𝑥𝑧𝑧 = 8.72727𝑥𝑥1 + 12.7037𝑥𝑥2 + 16.2121𝑥𝑥3 

Subject to:  

14.2821𝑥𝑥1 + 14.222𝑥𝑥2 + 14.2889𝑥𝑥3 ≤ 499.725 

            17𝑥𝑥1 + 15.7778𝑥𝑥3 ≤ 478.905                           

14.222𝑥𝑥1 + 17.7778𝑥𝑥2 ≤ 492.769                     

16.7879𝑥𝑥1 + 15.222𝑥𝑥2 + 17𝑥𝑥3 ≤ 407.287    

𝑥𝑥𝑖𝑖 ≥ 0,              𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖 = 1,2,3               

The optimal solution for the above LP is as follows: (x1 = 0, x2 = 0, x3 = 23.96, and z = 388.36). 
 

d. Through the application of the proposed method (Yager RF), the FLP problem mentioned above is 
converted into the following crisp LP:Then by using simplex method we get the optimal  

𝑀𝑀𝑎𝑎𝑥𝑥𝑧𝑧 = 13.8667𝑥𝑥1 + 12.4667𝑥𝑥2 + 15.9667𝑥𝑥3 

Subject to:  

14.2𝑥𝑥1 + 14𝑥𝑥2 + 14.1𝑥𝑥3 ≤ 499.1 

16.9𝑥𝑥1 + 15.7𝑥𝑥3 ≤ 478 

14𝑥𝑥1 + 17.7𝑥𝑥2 ≤ 492.4 

16.7𝑥𝑥1 + 15𝑥𝑥2 + 16.9𝑥𝑥3 ≤ 407.2 

𝑥𝑥𝑖𝑖 ≥ 0,        𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖 = 1,2,3 

Then, using the simplex method, the optimal solution for the above LP is as follows: 
(x1 = 0, x2 = 0, x3 = 24.09, and z = 384.79). 
 

5. Discussion 
In LP with fuzzy parameters, RFs help in converting fuzzy constraints or objectives into crisp 

ones, which can then be handled using traditional LP techniques. Overall, RFs provide a structured 
approach to handling fuzzy numbers in LP and decision-making contexts, enabling the integration of 
uncertainty and imprecision into optimization and decision-making processes. Hence, the estimation 
of the maximum benefit in the context of solving a crisp LP problem converted from a FLP problem 
depends on the RF selected to convert fuzzy numbers into crisp values. 

 

6. Conclusion 
This paper presents a novel approach to tackling FLP problems, where coefficients of the 

objective function, right-hand side values, and coefficients of constraints are represented as fuzzy 
numbers. The proposed method involves ranking these fuzzy parameters using distinct RFs, 
including the Maleki, the Campos, Yager’s F1, and the Yager linear RF. By ranking these fuzzy 
parameters, the inherent uncertainties and ambiguities associated with fuzzy numbers are effectively 
managed. The main goal of the proposed method is to determine an optimal solution to the FLP 
problem. To achieve this, the ranked fuzzy parameters are utilized to formulate crisp LP problems, 
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which can then be solved using conventional LP techniques. By transforming the fuzzy problem into 
a series of crisp problems, the proposed method facilitates the application of well-established 
optimization algorithms to identify optimal solutions. Through a systematic approach to address the 
inherent fuzziness in problem parameters, the proposed method offers a robust framework for 
obtaining optimal solutions in scenarios characterized by uncertainties and vagueness. 
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