
Kurdistan Journal of Applied Research (KJAR) | Print-ISSN: 2411-7684 – Electronic-ISSN: 2411-7706 | kjar.spu.edu.iq

Volume 2 | Issue 3 | August 2017 | DOI: 10.24017/science.2017.3.15

Optimization Algorithm’s Problems: Comparison Study

Rebaz M. Nabi

Network Dept.

 Technical College of informatics
Sulaimani Polytechnic University

Kurdistan Technical Institute

rebaz.nabi@spu.edu.iq; rebaz.nabi@kti.edu.krd

Rania Azad

Network Department
Computer Science Institute

Sulaimani Polytechnic University

Sulaimani, Iraq
Rania.azad@spu.edu.iq

Rebwar M. Nabi

Deputy Dean

Kurdistan Technical Institute,

Sulaimani Polytechnic University
Sulaimani, Iraq

Rebwar.nabi@kti.edu.krd

Soran Saeed

Vice president
Sulaimani Polytechnic University

Sulaimani, Iraq

soran.saeed@spu.edu.iq

Abstract:Currently, in various fields and

disciplines problem optimization are used

commonly. In this concern, we have to define

solutions which are two known concepts optimal

or near optimal optimization problems in regards

to some objects. Usually, it is surely difficult to

sort problems out in only one step, but some

processes can be followed by us which people

usually call it problem solving. Frequently, the

solution process is split into various steps which

are accomplishing one after the other. Therefore,

in this paper we consider some algorithms that

help us to sort out problems, for exemplify,

finding the shortest path, minimum spanning

tree, maximum network flows and maximum

matching. More importantly, the algorithm

comparison will be presented. Additionally, the

limitation of each algorithm. The last but not the

least, the future research in this area will be

approached.

Keywords: Algorithm, problem solving, shortest

path, minimum spanning tree, network flows.

1. INTRODUCTION
Computation algorithms take a primitive role in

developing computer applications, which

contributes greatly to their accuracy and

efficiency. Therefore, optimization becomes one

of the most important subjects that are considered

when the applications are developed. However, it

seems very difficult to give a good solution in

dealing with some areas such as making a

working timetable, producing a plan for

production and routing on the network. It is also

noticed that these problems can be represented as

graphs [2] [10] [4] [13] [1]. Thus, this article

aims to discuss some common algorithms which

help to solve the combinatorial problems in terms

of finding the shortest path, minimum spanning

tree, maximum network flows and maximum

matching.

In particular, the first part will introduce

Dijkstra’s algorithm for finding the shortest path

in a graph. The second part will give the general

idea of algorithms to minimize the spanning tree.

The next part illustrates how the maximum

network flow is determined by Fork-Fulkerson

and Edmons-Karps algorithms. The maximum

matching problem is discussed in the final part,

which can be solved by Hopcroft-Karp and

Edmonds algorithms.

1. Shortest Path Problem
The shortest path algorithm is defined for

network/graphs whether directed, undirected, or

both which solves the shortest path problem [11]

[9] [10]. In order to find path between two

vertices’ problem the shortest path problem is

used (source and destination nodes) the lowest

cost path with their summation [4] [10], for

example: Google map shows the shortest path

between source and destination place.

Algorithms

 Dijkstra’s algorithm: When edge weights

are non-negative, Dijkstra’s algorithm is used

to overcome the single-source shortest path

issues on a weighted, concentrating graph G =

(V, E) [3].

 Bellman-Fond algorithm: On negative edge

weights Bellman-Fond algorithm is used to

solve the single-source problem [3]

 Floyd’s algorithm: This algorithm all pairs

shortest paths.

This paper only examines Dijkstra’s algorithm for

solving shortest path problem.

1.1. Dijkstra’s Algorithm
Dijkstra’s algorithm is a “graph based shortest

path search algorithm and it solves the shortest

path problem for a graph or network with non-

negative edge costs, producing a shortest path

tree” [12] [14]. This algorithm is used for

generating routing table in the network.

In a graph, it traverses the unvisited nodes with

the lowermost cost remoteness, computes the

distance through it to each unused fellow node,

and modernizes the neighbor’s space if it is

slighter [12].

For example, Figure 1 demonstrates a directed

weighted graph G= (V,E) with non-negative

weight w and source node s. The issue is to

identify the shortest path from basis node to any

end node with bottommost weight/cost in the

mailto:rebaz.nabi@spu.edu.iq
mailto:rebaz.nabi@kti.edu.krd
mailto:Rania.azad@spu.edu.iq
mailto:Rebwar.nabi@kti.edu.krd
mailto:soran.saeed@spu.edu.iq

graph [14].

Figure 1 Weighted directed graph G=(V, E)

Figure 2 The shortest path for given graph

The solution is given in figure 2, which shows

the shortest path from vertex 0 to others with the

minimum weights.

Time complexity
Dijkstra’s algorithm preserves the min-priority

queue Q and classified into exactly three

precedence queue operation, INSERT,

EXTRACT-MIN, and DECREASE-KEY [3].

Dijkstra’s algorithm’s running time relies on min-

priority queue Q. “In a graph G= (V, E) edges E

and vertices V can be articulated as a meaning of

│E│ and │V│. First, the min-priority queue takes

the vertices being numbered 1 to │V│. We keep

d[v] in array, each INSERT and

DECREASE_KEY process takes O (1) time, and

EXTRACTMIN job takes O(V) time, for a total

running time of O(V2+E)=O(V2)”[3] .

2. Minimum Spanning Tree
The “Minimum Spanning Tree” (MST)is defined

for finding a subtree spanning of all the nodes,

whose total weight might be minimal [16] [11].

MST is also known as minimum connector,

economy tree.

“A weighted graph is a graph where we associate

with each edge a real number, called the weight.

Thus, the Spanning tree of G is a subgraph T of G

which is a tree that spans G. The weight of a

spanning tree T is the sum of the lowest weights

of its edges” [16].

There are two common algorithms to construct

Minimal Spanning Tree, which are “Kruskal’s

algorithm” and “Prim’s algorithm”. The main

concept of Kruskal’s algorithms is as below:

 Category all the edges in cumulative

weight/cost order.

 If we take the edges consequently, if the

cycle has not been created by any node,

and formerly add into the spanning tree.

Otherwise, abandon it.

 We need to add n-1 edges in the minimal

spanning tree.

Figure 3 illustrates a weighted undirected graphs

G= (V, E) which comprises of n number of nodes

and m the number of ends. The minimum

spanning tree has cost at 33.

Figure 3 Example of Minimum spanning tree [11]

The operating time of “Kruskal's algorithm”

works on the disconnect set tree data structure

which each vertex holds a reference to its parent

node. First, we assume the disjoint set A in line 1

spend “O (1)” time, and the time to category the

ends in stroke 4 is O (E lg E). For instance, it

needs to add for the price of the |V| group

processes in the for loop 2-3 lines. The for-loop

of lines 5-8 accomplishes O(E) FIND-SET and

UNION actions on the disjoint-set. “Along with

the |V| MAKE-SET operations, these take a total

of O ((V + E) α (V)) time, where α is the very

slowly growing function” [11]. Graph G is

supposed to be associated, we have |E| ≥ |V| - 1,

and therefore, the disjoint-set tasks use O (E

α(V)) time. Subsequently α(|V|) = O (lg V) =O

(lg E), the whole running time of “Kruskal's

algorithm” is O (E lg E). Witnessing that |E| <

|V|2, we have lg |E| = O (lg V), and thus we can

repeat the running time of “Kruskal's algorithm”

as O (E lg V) [3].

The “Minimal Spanning Tree” matter is to choose

a number of edges so as to there is a path between

each node [16] [17]. The edge lengths summation

is to be reduced. In the meantime, the Shortest

Path Tree problematic is to discover the group of

edges linking all nodes in order to achieve the

objective that the sum of the edge distances from

the origin to each node is decreased [17] [11].

Additionally, shortest path tree depends on stating

node but MST is not.

3. Maximum flow network
In the actual network, network nodes and edges

have capacity limitations [18]. It needs to know

how much traffic transmission is in a limited

network capacity of two specified nodes (called

up to between sources and sinks) in many cases,

and determine to achieve the maximum flow

transmission strategy. Maximum network flow

problem is the mathematical model to describe

this problem. The maximum flow problem is an

important part of the network flow theory, and it

is a classic combinatorial optimization problem,

but can also be seen as special linear

programming problems [19]. In addition, to solve

the problems in the real network, the maximum

flow problem has a several uses in many areas of

engineering, the sciences of physics, chemistry,

biology, management science and applied

mathematics. Therefore, the maximum flow

problem is an important research content of

computer science and operations research.

The research of maximum flow algorithm has 40

years of history. The earliest algorithm is network

simplex method proposed by Dantzig in 1951 and

upload rail algorithms increased by Ford and

Fulkerson in1956 [4]. They are pseudo-

polynomial time algorithm. A polynomial time

algorithm began in 20 century 70’s, respectively

proposed by Dinic (1907, 1973), Edmonds and

Karp (1970, 1972) [5] [4]. In 1973, Dinic got the

time complexity of core factor algorithms for the

first time. Decades after, the maximum flow

algorithm obtained a lot of progress, and a lot of

good algorithms were constantly being proposed.

3.1. Ford-Fulkerson Algorithm
The Ford-Fulkerson technique which is named

for L.R. Ford, Jr. and D.R.Fulkerson, calculates

the thoroughgoing movement in a flow network.

It was issued in 1954 [20]. The name “Ford-

Fulkerson” is frequently adopts by the

“Edmonds-Karp” algorithm, which is narrowing

down of “Ford-Fulkerson”.

 Augmenting path
Is a path from the basis edge to sink point with

the size is always greater than Zero which means

that sending more flows via this path is possible?

 Residual capacity
The residual capacity of an edge is equal to the

capacity minus the flows: “cf(u, v)= c(u, v)- f (u,

v)”.

 Residual network
According to the flow f, the residual network is a

graph of thenetwork in which use all the capacity

of the path to subtract the minimum of the

capacity on the path and then add or expand the

ant direction of the capacity.

Algorithms

Based on the idea of Ford-Fulkerson method,

there are several algorithms introduced to solve

the maximum network flow problem.

The following part focuses on the basic Ford-

Fulkerson algorithm and the extended one called

Edmonds-Karp algorithm. These algorithms are

based on the assumption that there is always at

least a path in the graph direct G, which has set of

edges E and vertexes V from vertex s to vertex t.

3.3.1The basic Ford-Fulkerson Algorithm

As defined in [11], the maximum flow f is

determined by adding up with the residual

capacity (cf(p)) of each augmenting path p, which

is the path from theoriginal vertex to the

destination vertex in the residual graphs (Gf).

This algorithm can be implemented as below:

Figure 4 Ford-Fulkerson(G,s,t)

 Step 1: initialize the flow of each edge in

original graph G with 0.

 Step 2: produce residual Gf from graph G

based on the flows of edges.

 Step 3: determine the augmenting path p in Gf

 If there is no augmenting path found, the algorithm is

ended; otherwise, move to next step.

 Step 4: calculate the residual capacity of path p, which

is the minimum of flows on this path.

 Step 5: increase the flows of all edges, which appear

in path p, in Gf by the residual capacity got from step

4.

 Step 6: repeat step 3-5.

Figure 5 Example of maximum network flow using

Fork-Fulkerson algorithm

The efficiency of Ford-Fulkerson algorithm is

assessed in terms of time complexity [11] [20].

The time consuming of this algorithm is

calculated by the sum of time-consuming in

initiation flow values in step 1 and performing

aloop in step 3 to 6. Firstly, the complexity is got

from step 1 is E, the number of edges in graph G.

Secondly, the outer while loop in step 3 can be

run E time if all paths from sto t is one edge of G.

Finally, in the worst case where the flow is

increased by one for each time running step 5, the

number of times isup to the maximum flow value.

Therefore, the complexity of this algorithm is

O(E|f|). Figure 6 shows that the maximum flow is

2N, which is increased by 1 that causes the

complexity is 2N.

Figure 6: The maximum flow is 2N in which N is a

capacity of each edge

Besides, the complexity also depends on how the

augmenting path is chosen [11]. Choosing the

arbitrary path can lead to un-stopped running

ofthealgorithm in which the maximum flow

keeps increasing. In addition, the algorithm also

cannot terminate if the capacity is anirrational

number [6]. Therefore, solving the selection

problem will not only help to ensure the

correctness of the Ford-Fulkerson method but

also improve the efficiency of algorithms.

3.2. Edmons-Karp Algorithm
Introduced by Edmons and Karp (1972), the

Edmons-Karp algorithm improves the Ford-

Fulkerson algorithm by replacing choosing

thearbitrary augmenting path by the shortest one

[6]. The Edmons-Karp algorithm takes advantage

of breadth-depth examine to investigate a path

from s to t that has the minimum edges [11] [21].

He proves that in the graph which all edges'

capacity is a unit, if the shortest path is selected, it

is obviously that the distance of next shortest path

will not be less than one of the previous path.

Furthermore, because after augmenting flow,

there is at least one edge (u,v), which has capacity

is equal to the residual capacity of this path, is

removed from the next residual graph. Thus, the

distance of u can be up to |V|-2. Accordingly, the

complexity of Edmons-Karp procedure is O(E.V.

E) = O(VE
2
).

4. Maximum matching
Let G= (V,E) be directionless graph. The graph G

is matching with a subcategory of edges M

⊆ E when no two edges in M have the same

vertex. In other words no two edges in M can be

adjacent to each other. A vertex v is coordinated

by M when it is connected by an edge E to

another vertex, otherwise it is unmatched. The

edges that connect a pair of vertices is said to be a

part of matching.

Figure 7 The edges in red (1 →2, 3→4,5→6)form

matching

 Maximum Matching
A maximum matching is achieved when the

matching has themaximum size or the maximum

cardinality. A graph can have one or more

matching of maximum cardinality.

For example, in figure 7, there are six vertices.

When they are paired, we should get 3 edges.

From the figure, we get 3 edges, which

apparently make it a maximum matching.

 Maximal Matching
When no more possible matching to vertexvcan

be attained, thematching is said to be maximal.

Figure 8 The edges in red form matching.

Here the vertices 5 and 6 could not be

pairedwithout violating the matching property.

Hence in this case, only a maximal matching can

be attained as shown in the fig.

Perfect Matching

When all the vertices of the Graph G are

matched, it complete orperfect matching.

For instance, in figure 7, all the vertices are

connected by an edge to another. Such a

matching is a perfect matching.

Alternating Path
Let G = (V, E) be a graph. A path P can be an

alternating pathwith respect to M(matching) if and

only if among every two consecutive edges along

the path, exactly one belongs to M. An alternating

cycle C is defined similarly.

In other words, an alternating path is an

alternative way in which the edges (E) connect to

the matching (M).

Augmenting Path
An augmenting path P with respect to a matching

M is analternating path that starts and ends in

unmatched vertices.

Theorem (Berge’57)
Let M be a matching in the graph G = (V,E). Then

either M isa maximum cardinality matching or

there exists an M-augmenting path.

4.1. Hopcroft-Karp Algorithm:
The algorithm finds the maximum matching for

the given bipartite graph. This was found by John

Hopcroft and Richard Karp in the year

1973[22][23][24][25]. Let G = (S; T; E) be a

bipartite graph and let M be a matching in G.

Instead of building the alternating trees one at a

time, we can use breadth-first search to

simultaneously build alternating trees from all

unmatched vertices of S. This allows finding

shortest augmenting paths. A maximal collection

of shortest augmenting paths can also be found.

The Hopcroft-Karp algorithm uses the

augmenting path technique and it works in phases

[24]. In each phase, it constructs a highest

collection of vertex-disjoint shortest augmenting

paths and uses them to enhance the matching.

Though the algorithm uses augmenting path

technique it does not search the path one by one,

to reduce the runtime. Instead, it searches for

many paths at the same time. The length of the

path grows in each step. Searching for long

disjoint paths will not take more time because

there will not be many of them.

The algorithm finds a maximal set of shortest

vertices disjoint augmenting paths with respect to

M in O(|E|) time. O(|E|) running time is the result

of the construction of the partial-DFS procedure

that considers each vertex, and each edge only

once. The visited vertices are removed, so the

paths in P are disjoint.

4.2. Edmonds Algorithm
To the problem of finding a maximum match in

the non-bipartite graphs, we use blossom’s

algorithm. Jack Edmonds discovered the

“Blossom algorithm” for finding maximum

matches in graphs [26][27]. Given in a graph

G=(V,E) the algorithm finds maximum matching.

It reduces the odd length alternating cycles to a

contracted graph and searches iteratively the

contracted graph.

In a given graph G in which M is the matching

and E is the edges. An M-alternating forest is a

forest L such that, the root of each tree in L is a

vertex from E and every tree doesnot contain

other vertices from E and every vertex in E

belongs to one tree in L and every edge at anodd

distance from E belongs to M.

The Edmond’s algorithm firstly grows the forest

F by two edges, secondly if tow components are

connected then increases the Matching M and

contracts the graph/blossom.

These operations take O(m) times, hence the

runtime of the blossom algorithm to find a

maximum matching is given as O(n
2
m).

Applications
It is largely used in real world substantially in

areas of image feature matching, Dual Processor

Application. The following part will discuss a

simple problem and how the solution is produced

by using maximum matching algorithm.

Problem: Students Ali (A), Baram (B), Canan

(C), Dana(D), Eman (E),Fenk (F)should be

assigned to the tasks Washing (W), Painting (P),

Training (T), Mending (M), Lighting (L),

Singing(s) as per their expertise

1. A W, P, T

2. B T, M

3. C L, M

4. D S,W,L

5. E S

6. F L,T

Initially, A, B, C,Dwill be assigned to the first job.

Figure 9 Example of Maximum Matching Problem

 Step 1:Start with the non-trivial initial

matching

A=W,B=T,C=L,D=S

 Step2:Find an alternating path

(i)E-S=D-W=A-P (E=P)

 (ii)F-T=B-M (F=M)

 Step 3:When an alternating path is found list

the path and change the status of the other

arcs.If an alternating path cannot be found,

we have reached the maximal matching

 Step 4:Rewrite the new matching with the

changed arcs from the alternating path.

E=S, D=W, A=P, S≠D, W≠T from (i)

F=T, B=M, B≠T from (ii)

Hence the maximum matching is achieved.

 Step5:If the matching is complete stop, else

repeat step 3

Figure 10 The new bipartite graph after applying the

theorem

5. Algorithm Comparison
It evident that the concepts and mechanisms of

algorithms are different which it may lead to different

output and scenarios. Firstly, Dijkstra's algorithm is

comparatively faster than Bellman-Ford. On the other

hand, negative "distances" can be handled by Bellman

Ford's algorithm which is not the case with Dijkstra's

algorithm. Therefore, when the negative distances in the

calculation is need to be considered, the Bellman-Ford

algorithm should be used. Nevertheless, if negative

distance is not required, the Dijkstra's algorithm is

usually preferred especially for large networks.

Outstandingly, both algorithms can have the same result

when same topologies are used whereas, different

outcomes will be produced when different topologies

considered.

Additionally, there is difference between Dijkstra and

Kruskal algorithm in which, Dijkstra's finds a connection

between two vertices (shortest path between two

vertices), while Kruskal's will find a connection between

and a number of vertices (finding the minimum spanning

tree between all the given vertices).

6. CONCLUSION
Combinatorial optimization emerged from more

than 50 years ago, [6][15] [12] [7]. It not only

helps to solve real-life problems but also tends to

give efficient algorithms, especially in working

with the large and complex data. In other words,

algorithms for optimization have to produce

accurate results and take less time as much as

possible. Thus, these discussed algorithms can be

seen as abasic approach for further improvement

in solving four classical combinatorial problems,

including shortest path, spanning tree, network

flow, and matching.

Last but not least,it can be identified that there is

a big room of improvement and researchin this

area. So, further comparisons can be conducted

experimentally to achieve better accurate results.

REFERENCE
[1]. R. Kümmerle, G. Grisetti, H. Strasdat, K.

Konolige and W. Burgard, "G
2
o: A general

framework for graph optimization," 2011 IEEE

International Conference on Robotics and

Automation, Shanghai, 2011, pp. 3607-3613.

[2]. G. S. Halford, R. Baker, J. E. McCredden, and

J. D. Bain, “How Many Variables Can Humans

Process?,” Psychological Science, vol. 16, no. 1,

pp. 70–76, Jan. 2005.

[3]. X.-S. Yang, “Flower Pollination Algorithm for

Global Optimization,” in Unconventional

Computation and Natural Computation, 2012, pp.

240–249.

[4]. R. Ahuja, T. Magnanti, and J. Orlin, Network

Flows: Theory, Algorithms, and Applications.

Prentice Hall, 1993.

[5]. A. V. Goldberg, “Recent developments in

maximum flow algorithms,” in Algorithm Theory

— SWAT’98, 1998, pp. 1–10.

[6]. B. Korte and J. Vygen, Combinatorial

Optimization, 1st ed. Berlin: Springer Berlin, 2014.

[7]. A. Alazzam and H. W., "A New Optimization

Algorithm For Combinatorial Problems",

International Journal of Advanced Research in

Artificial Intelligence, vol. 2, no. 5, 2013.

[8]. X.-S. Yang, M. Karamanoglu, and X. He,

“Multi-objective Flower Algorithm for

Optimization,” Procedia Computer Science, vol.

18, pp. 861–868, Jan. 2013.

[9]. Xin‐She Yang and Amir Hossein Gandomi,

“Bat algorithm: a novel approach for global

engineering optimization,” Engineering

Computations, vol. 29, no. 5, pp. 464–483, Jul.

2012.

[10]. Y.-Q. Cheng, V. Wu, R. Collins, A. R.

Hanson, and E. M. Riseman, “Maximum-weight

bipartite matching technique and its application in

image feature matching,” 1996, vol. 2727, pp.

453–462.

[11]. T. Cormen, C. Leiserson, R. Rivest and C.

Stein, Introduction to algorithms, 1st ed.

Cambridge, Massachusetts: The MIT Press, 2014.

[12]. T. Weise, R. Chiong, and K. Tang,

“Evolutionary Optimization: Pitfalls and Booby

Traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp.

907–936, Sep. 2012

[13].T. Weise et al., "Benchmarking Optimization

Algorithms: An Open Source Framework for the

Traveling Salesman Problem," in IEEE

Computational Intelligence Magazine, vol. 9, no.

3, pp. 40-52, Aug. 2014.

[14]. T. Weise and K. Tang, "Evolving Distributed

Algorithms With Genetic Programming," in IEEE

Transactions on Evolutionary Computation, vol.

16, no. 2, pp. 242-265, April 2012.

[15]. T. Weise, M. Wan, P. Wang, K. Tang, A.

Devert and X. Yao, "Frequency Fitness

Assignment," in IEEE Transactions on

Evolutionary Computation, vol. 18, no. 2, pp. 226-

243, April 2014.

[16]. K. Weicker, Evolutionary algorithms and

dynamic optimization problems, 1st ed. Osnabr ck:

Der AndereVerl., 2003.

[17]. A. Singh, “An artificial bee colony algorithm

for the leaf-constrained minimum spanning tree

problem,” Applied Soft Computing, vol. 9, no. 2,

pp. 625–631, Mar. 2009.

[18]. F. Ortega and L. A. Wolsey, “A branch-and-

cut algorithm for the single-commodity,

uncapacitated, fixed-charge network flow

problem,” Networks, vol. 41, no. 3, pp. 143–158,

May 2003.

[19]. D. S. Hochbaum, “The Pseudoflow

Algorithm: A New Algorithm for the Maximum-

Flow Problem,” Operations Research, vol. 56, no.

4, pp. 992–1009, Aug. 2008.

[20]. J. M. Drake and D. M. Lodge, “Global hot

spots of biological invasions: evaluating options

for ballast–water management,” Proceedings of the

Royal Society of London B: Biological Sciences,

vol. 271, no. 1539, pp. 575–580, Mar. 2004.

[21]. V. Vineet and P. J. Narayanan, "CUDA cuts:

Fast graph cuts on the GPU," 2008 IEEE Computer

Society Conference on Computer Vision and

Pattern Recognition Workshops, Anchorage, AK,

2008, pp. 1-8.

[22]. G. Menichetti, L. Dall’Asta, and G. Bianconi,

“Network Controllability Is Determined by the

Density of Low In-Degree and Out-Degree

Nodes,” Phys. Rev. Lett., vol. 113, no. 7, p.

078701, Aug. 2014.

[23]. S. Szeider, “Minimal unsatisfiable formulas

with bounded clause-variable difference are fixed-

parameter tractable,” Journal of Computer and

System Sciences, vol. 69, no. 4, pp. 656–674, Dec.

2004.

[24]. C.-G. Quimper, A. López-Ortiz, P. van Beek,

and A. Golynski, “Improved Algorithms for the

Global Cardinality Constraint,” in Principles and

Practice of Constraint Programming – CP 2004,

2004, pp. 542–556.

[25]. N. Blum, A simplified realization of the

Hopcroft Karp approach to maximum matching in

general graphs, 1st ed. Bonn: Inst. f rInformatik,

1999.

[26]. V. Kolmogorov, “Blossom V: a new

implementation of a minimum cost perfect

matching algorithm,” Math. Prog. Comp., vol. 1,

no. 1, pp. 43–67, Jul. 2009.

[27]. G. Bebek, V. Patel, and M. R. Chance,

“PETALS: Proteomic Evaluation and Topological

Analysis of a mutated Locus’ Signaling,” BMC

Bioinformatics, vol. 11, p. 596, 2010.

