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Abstract:Currently, in various fields and 

disciplines problem optimization are used 

commonly. In this concern, we have to define 

solutions which are two known concepts optimal 

or near optimal optimization problems in regards 

to some objects. Usually, it is surely difficult to 

sort problems out in only one step, but some 

processes can be followed by us which people 

usually call it problem solving. Frequently, the 

solution process is split into various steps which 

are accomplishing one after the other. Therefore, 

in this paper we consider some algorithms that 

help us to sort out problems, for exemplify, 

finding the shortest path, minimum spanning 

tree, maximum network flows and maximum 

matching. More importantly, the algorithm 

comparison will be presented. Additionally, the 

limitation of each algorithm. The last but not the 

least, the future research in this area will be 

approached.   

 

Keywords: Algorithm, problem solving, shortest 

path, minimum spanning tree, network flows. 

 

1. INTRODUCTION 
Computation algorithms take a primitive role in 

developing computer applications, which 

contributes greatly to their accuracy and 

efficiency. Therefore, optimization becomes one 

of the most important subjects that are considered 

when the applications are developed. However, it 

seems very difficult to give a good solution in 

dealing with some areas such as making a 

working timetable, producing a plan for 

production and routing on the network. It is also 

noticed that these problems can be represented as 

graphs [2] [10] [4] [13] [1]. Thus, this article 

aims to discuss some common algorithms which 

help to solve the combinatorial problems in terms 

of finding the shortest path, minimum spanning 

tree, maximum network flows and maximum 

matching. 

In particular, the first part will introduce 

Dijkstra’s algorithm for finding the shortest path 

in a graph. The second part will give the general 

idea of algorithms to minimize the spanning tree. 

The next part illustrates how the maximum 

network flow is determined by Fork-Fulkerson 

and Edmons-Karps algorithms. The maximum 

matching problem is discussed in the final part, 

which can be solved by Hopcroft-Karp and 

Edmonds algorithms. 

 

 

 

1. Shortest Path Problem 
The shortest path algorithm is defined for 

network/graphs whether directed, undirected, or 

both which solves the shortest path problem [11] 

[9] [10]. In order to find path between two 

vertices’ problem the shortest path problem is 

used (source and destination nodes) the lowest 

cost path with their summation [4] [10], for 

example: Google map shows the shortest path 

between source and destination place. 

 

Algorithms 

 Dijkstra’s algorithm: When edge weights 

are non-negative, Dijkstra’s algorithm is used 

to overcome the single-source shortest path 

issues on a weighted, concentrating graph G = 

(V, E) [3]. 

 Bellman-Fond algorithm: On negative edge 

weights Bellman-Fond algorithm is used to 

solve the single-source problem [3] 

 Floyd’s algorithm: This algorithm all pairs 

shortest paths. 

 

This paper only examines Dijkstra’s algorithm for 

solving shortest path problem. 

 

1.1. Dijkstra’s Algorithm 
Dijkstra’s algorithm is a “graph based shortest 

path search algorithm and it solves the shortest 

path problem for a graph or network with non-

negative edge costs, producing a shortest path 

tree” [12] [14]. This algorithm is used for 

generating routing table in the network. 

In a graph, it traverses the unvisited nodes with 

the lowermost cost remoteness, computes the 

distance through it to each unused fellow node, 

and modernizes the neighbor’s space if it is 

slighter [12]. 

For example, Figure 1 demonstrates a directed 

weighted graph G= (V,E) with non-negative 

weight w and source node s. The issue is to 

identify the shortest path from basis node to any 

end node with bottommost weight/cost in the 
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graph [14]. 

 

 

 

 

 

 

 

 

 

Figure 1 Weighted directed graph G=(V, E) 

 

 

 

 

 

 

 

 

 

 

Figure 2 The shortest path for given graph 

 

The solution is given in figure 2, which shows 

the shortest path from vertex 0 to others with the 

minimum weights. 

 

Time complexity 
Dijkstra’s algorithm preserves the min-priority 

queue Q and classified into exactly three 

precedence queue operation, INSERT, 

EXTRACT-MIN, and DECREASE-KEY [3]. 

Dijkstra’s algorithm’s running time relies on min-

priority queue Q. “In a graph G= (V, E) edges E 

and vertices V can be articulated as a meaning of 

│E│ and │V│. First, the min-priority queue takes 

the vertices being numbered 1 to │V│. We keep 

d[v] in array, each INSERT and 

DECREASE_KEY process takes O (1) time, and 

EXTRACTMIN job takes O(V) time, for a total 

running time of O(V2+E)=O(V2)”[3] . 

 

2. Minimum Spanning Tree 
The “Minimum Spanning Tree” (MST)is defined 

for finding a subtree spanning of all the nodes, 

whose total weight might be minimal [16] [11]. 

MST is also known as minimum connector, 

economy tree. 

“A weighted graph is a graph where we associate 

with each edge a real number, called the weight. 

Thus, the Spanning tree of G is a subgraph T of G 

which is a tree that spans G. The weight of a 

spanning tree T is the sum of the lowest weights 

of its edges” [16]. 

There are two common algorithms to construct 

Minimal Spanning Tree, which are “Kruskal’s 

algorithm” and “Prim’s algorithm”. The main 

concept of Kruskal’s algorithms is as below: 

 

 Category all the edges in cumulative 

weight/cost order.  

 If we take the edges consequently, if the 

cycle has not been created by any node, 

and formerly add into the spanning tree. 

Otherwise, abandon it.  

 We need to add n-1 edges in the minimal 

spanning tree.  

 

Figure 3 illustrates a weighted undirected graphs 

G= (V, E) which comprises of n number of nodes 

and m the number of ends. The minimum 

spanning tree has cost at 33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Example of Minimum spanning tree [11] 

 

The operating time of “Kruskal's algorithm” 

works on the disconnect set tree data structure 

which each vertex holds a reference to its parent 

node. First, we assume the disjoint set A in line 1 

spend “O (1)” time, and the time to category the 

ends in stroke 4 is O (E lg E). For instance, it 

needs to add for the price of the |V| group 

processes in the for loop 2-3 lines. The for-loop 

of lines 5-8 accomplishes O(E) FIND-SET and 

UNION actions on the disjoint-set. “Along with 

the |V| MAKE-SET operations, these take a total 

of O ((V + E) α (V)) time, where α is the very 

slowly growing function” [11]. Graph G is 

supposed to be associated, we have |E| ≥ |V| - 1, 

and therefore, the disjoint-set tasks use O (E 

α(V)) time. Subsequently α(|V|) = O (lg V) =O 

(lg E), the whole running time of “Kruskal's 

algorithm” is O (E lg E). Witnessing that |E| < 

|V|2, we have lg |E| = O (lg V), and thus we can 

repeat the running time of “Kruskal's algorithm” 

as O (E lg V) [3]. 

 

The “Minimal Spanning Tree” matter is to choose 

a number of edges so as to there is a path between 

each node [16] [17]. The edge lengths summation 

is to be reduced. In the meantime, the Shortest 

Path Tree problematic is to discover the group of 

edges linking all nodes in order to achieve the 

objective that the sum of the edge distances from 

the origin to each node is decreased [17] [11]. 

Additionally, shortest path tree depends on stating 

node but MST is not. 

 

3. Maximum flow network 
In the actual network, network nodes and edges 

have capacity limitations [18]. It needs to know 

how much traffic transmission is in a limited 

network capacity of two specified nodes (called 

up to between sources and sinks) in many cases, 

and determine to achieve the maximum flow 

transmission strategy. Maximum network flow 



 

 

problem is the mathematical model to describe 

this problem. The maximum flow problem is an 

important part of the network flow theory, and it 

is a classic combinatorial optimization problem, 

but can also be seen as special linear 

programming problems [19]. In addition, to solve 

the problems in the real network, the maximum 

flow problem has a several uses in many areas of 

engineering, the sciences of physics, chemistry, 

biology, management science and applied 

mathematics. Therefore, the maximum flow 

problem is an important research content of 

computer science and operations research. 

The research of maximum flow algorithm has 40 

years of history. The earliest algorithm is network 

simplex method proposed by Dantzig in 1951 and 

upload rail algorithms increased by Ford and 

Fulkerson in1956 [4]. They are pseudo-

polynomial time algorithm. A polynomial time 

algorithm began in 20 century 70’s, respectively 

proposed by Dinic (1907, 1973), Edmonds and 

Karp (1970, 1972) [5] [4]. In 1973, Dinic got the 

time complexity of core factor algorithms for the 

first time. Decades after, the maximum flow 

algorithm obtained a lot of progress, and a lot of 

good algorithms were constantly being proposed. 

 

3.1. Ford-Fulkerson Algorithm 
The Ford-Fulkerson technique which is named 

for L.R. Ford, Jr. and D.R.Fulkerson, calculates 

the thoroughgoing movement in a flow network. 

It was issued in 1954 [20]. The name “Ford-

Fulkerson” is frequently adopts by the 

“Edmonds-Karp” algorithm, which is narrowing 

down of “Ford-Fulkerson”. 

 

 Augmenting path 
Is a path from the basis edge to sink point with 

the size is always greater than Zero which means 

that sending more flows via this path is possible?  

 

 Residual capacity 
The residual capacity of an edge is equal to the 

capacity minus the flows: “cf(u, v)= c(u, v)- f (u, 

v)”.  

 

 Residual network 
According to the flow f, the residual network is a 

graph of thenetwork in which use all the capacity 

of the path to subtract the minimum of the 

capacity on the path and then add or expand the 

ant direction of the capacity.  

 

Algorithms  

Based on the idea of Ford-Fulkerson method, 

there are several algorithms introduced to solve 

the maximum network flow problem.  

 

The following part focuses on the basic Ford-

Fulkerson algorithm and the extended one called 

Edmonds-Karp algorithm. These algorithms are 

based on the assumption that there is always at 

least a path in the graph direct G, which has set of 

edges E and vertexes V from vertex s to vertex t. 

 

3.3.1The basic Ford-Fulkerson Algorithm 
 

As defined in [11], the maximum flow f is 

determined by adding up with the residual 

capacity (cf(p)) of each augmenting path p, which 

is the path from theoriginal vertex to the 

destination vertex in the residual graphs (Gf). 

This algorithm can be implemented as below: 

 

Figure 4 Ford-Fulkerson(G,s,t) 

 

 Step 1: initialize the flow of each edge in 

original graph G with 0. 

 Step 2: produce residual Gf from graph G 

based on the flows of edges. 

 Step 3: determine the augmenting path p in Gf 

 If there is no augmenting path found, the algorithm is 

ended; otherwise, move to next step.  

 Step 4: calculate the residual capacity of path p, which 

is the minimum of flows on this path. 

 Step 5: increase the flows of all edges, which appear 

in path p, in Gf by the residual capacity got from step 

4. 

 Step 6: repeat step 3-5. 



 

 

Figure 5 Example of maximum network flow using 

Fork-Fulkerson algorithm 

The efficiency of Ford-Fulkerson algorithm is 

assessed in terms of time complexity [11] [20]. 

The time consuming of this algorithm is 

calculated by the sum of time-consuming in 

initiation flow values in step 1 and performing 

aloop in step 3 to 6. Firstly, the complexity is got 

from step 1 is E, the number of edges in graph G. 

Secondly, the outer while loop in step 3 can be 

run E time if all paths from sto t is one edge of G. 

Finally, in the worst case where the flow is 

increased by one for each time running step 5, the 

number of times isup to the maximum flow value. 

Therefore, the complexity of this algorithm is 

O(E|f|). Figure 6 shows that the maximum flow is 

2N, which is increased by 1 that causes the 

complexity is 2N. 

 

 

 

 

 

 

 

 

 

Figure 6: The maximum flow is 2N in which N is a 

capacity of each edge 

 

 

Besides, the complexity also depends on how the 

augmenting path is chosen [11]. Choosing the 

arbitrary path can lead to un-stopped running 

ofthealgorithm in which the maximum flow 

keeps increasing. In addition, the algorithm also 

cannot terminate if the capacity is anirrational 

number [6]. Therefore, solving the selection 

problem will not only help to ensure the 

correctness of the Ford-Fulkerson method but 

also improve the efficiency of algorithms. 

 

3.2. Edmons-Karp Algorithm 
Introduced by Edmons and Karp (1972), the 

Edmons-Karp algorithm improves the Ford-

Fulkerson algorithm by replacing choosing 

thearbitrary augmenting path by the shortest one 

[6]. The Edmons-Karp algorithm takes advantage 

of breadth-depth examine to investigate a path 

from s to t that has the minimum edges [11] [21]. 

He proves that in the graph which all edges' 

capacity is a unit, if the shortest path is selected, it 

is obviously that the distance of next shortest path 

will not be less than one of the previous path. 

Furthermore, because after augmenting flow, 

there is at least one edge (u,v), which has capacity 

is equal to the residual capacity of this path, is 

removed from the next residual graph. Thus, the 

distance of u can be up to |V|-2. Accordingly, the 

complexity of Edmons-Karp procedure is O(E.V. 

E) = O(VE
2
). 

 

4. Maximum matching 
Let G= (V,E) be directionless  graph. The graph G 

is matching with a subcategory of edges M 

⊆ E when no two edges in M have the same 

vertex. In other words no two edges in M can be 

adjacent to each other. A vertex v is coordinated 

by M when it is connected by an edge E to 

another vertex, otherwise it is unmatched. The 

edges that connect a pair of vertices is said to be a 

part of matching. 

 

 

Figure 7 The edges in red (1 →2, 3→4,5→6)form 

matching 

 

 Maximum Matching 
A maximum matching is achieved when the 

matching has themaximum size or the maximum 

cardinality. A graph can have one or more 

matching of maximum cardinality.  

For example, in figure 7, there are six vertices. 

When they are paired, we should get 3 edges. 

From the figure, we get 3 edges, which 

apparently make it a maximum matching.  

 

 Maximal Matching 
When no more possible matching to vertexvcan 

be attained, thematching is said to be maximal.  



 

 

 

 

 

 

 

 

 

 

Figure 8 The edges in red form matching. 

 

Here the vertices 5 and 6 could not be 

pairedwithout violating the matching property. 

Hence in this case, only a maximal matching can 

be attained as shown in the fig. 

 

Perfect Matching 

When all the vertices of the Graph G are 

matched, it complete orperfect matching.  

 

For instance, in figure 7, all the vertices are 

connected by an edge to another. Such a 

matching is a perfect matching.  

 

Alternating Path 
Let G = (V, E) be a graph. A path P can be an 

alternating pathwith respect to M(matching) if and 

only if among every two consecutive edges along 

the path, exactly one belongs to M. An alternating 

cycle C is defined similarly. 

In other words, an alternating path is an 

alternative way in which the edges (E) connect to 

the matching (M). 

Augmenting Path 
An augmenting path P with respect to a matching 

M is analternating path that starts and ends in 

unmatched vertices. 

Theorem (Berge’57) 
Let M be a matching in the graph G = (V,E). Then 

either M isa maximum cardinality matching or 

there exists an M-augmenting path. 

 

4.1. Hopcroft-Karp Algorithm: 
The algorithm finds the maximum matching for 

the given bipartite graph. This was found by John 

Hopcroft and Richard Karp in the year 

1973[22][23][24][25]. Let G = (S; T; E) be a 

bipartite graph and let M be a matching in G. 

Instead of building the alternating trees one at a 

time, we can use breadth-first search to 

simultaneously build alternating trees from all 

unmatched vertices of S. This allows finding 

shortest augmenting paths. A maximal collection 

of shortest augmenting paths can also be found. 

The Hopcroft-Karp algorithm uses the 

augmenting path technique and it works in phases 

[24]. In each phase, it constructs a highest 

collection of vertex-disjoint shortest augmenting 

paths and uses them to enhance the matching. 

Though the algorithm uses augmenting path 

technique it does not search the path one by one, 

to reduce the runtime. Instead, it searches for 

many paths at the same time. The length of the 

path grows in each step. Searching for long 

disjoint paths will not take more time because 

there will not be many of them. 

The algorithm finds a maximal set of shortest 

vertices disjoint augmenting paths with respect to 

M in O(|E|) time. O(|E|) running time is the result 

of the construction of the partial-DFS procedure 

that considers each vertex, and each edge only 

once. The visited vertices are removed, so the 

paths in P are disjoint. 

 

4.2. Edmonds Algorithm 
To the problem of finding a maximum match in 

the non-bipartite graphs, we use blossom’s 

algorithm. Jack Edmonds discovered the 

“Blossom algorithm” for finding maximum 

matches in graphs [26][27]. Given in a graph 

G=(V,E) the algorithm finds maximum matching. 

It reduces the odd length alternating cycles to a 

contracted graph and searches iteratively the 

contracted graph. 

In a given graph G in which M is the matching 

and E is the edges. An M-alternating forest is a 

forest L such that, the root of each tree in L is a 

vertex from E and every tree doesnot contain 

other vertices from E and every vertex in E 

belongs to one tree in L and every edge at anodd 

distance from E belongs to M. 

The Edmond’s algorithm firstly grows the forest 

F by two edges, secondly if tow components are 

connected then increases the Matching M and 

contracts the graph/blossom. 

These operations take O(m) times, hence the 

runtime of the blossom algorithm to find a 

maximum matching is given as O(n
2
m). 

 

Applications 
It is largely used in real world substantially in 

areas of image feature matching, Dual Processor 

Application. The following part will discuss a 

simple problem and how the solution is produced 

by using maximum matching algorithm. 

 

Problem: Students Ali (A), Baram (B), Canan 

(C), Dana(D), Eman (E),Fenk (F)should be 

assigned to the tasks Washing (W), Painting (P), 

Training (T), Mending (M), Lighting (L), 

Singing(s) as per their expertise 

 

1. A  W, P, T  

2. B T, M  

3. C L, M  

4. D S,W,L  

5. E S  

6. F L,T 



 

 

 

Initially, A, B, C,Dwill be assigned to the first job. 

 

Figure 9 Example of Maximum Matching Problem 

 Step 1:Start with the non-trivial initial 

matching 

A=W,B=T,C=L,D=S 

 Step2:Find an alternating path 

(i)E-S=D-W=A-P (E=P) 

   (ii)F-T=B-M (F=M) 

 Step 3:When an alternating path is found list 

the path and change the status of the other 

arcs.If an alternating path cannot be found, 

we have reached the maximal matching 

 Step 4:Rewrite the new matching with the 

changed arcs from the alternating path. 

E=S, D=W, A=P, S≠D, W≠T from (i) 

F=T, B=M, B≠T from (ii) 

Hence the maximum matching is achieved. 

 

 Step5:If the matching is complete stop, else 

repeat step 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 The new bipartite graph after applying the 

theorem 

 

5. Algorithm Comparison  
It evident that the concepts and mechanisms of 

algorithms are different which it may lead to different 

output and scenarios. Firstly, Dijkstra's algorithm is 

comparatively faster than Bellman-Ford. On the other 

hand, negative "distances" can be handled by Bellman 

Ford's algorithm which is not the case with Dijkstra's 

algorithm. Therefore, when the negative distances in the 

calculation is need to be considered, the Bellman-Ford 

algorithm should be used. Nevertheless, if negative 

distance is not required, the Dijkstra's algorithm is 

usually preferred especially for large networks. 

Outstandingly, both algorithms can have the same result 

when same topologies are used whereas, different 

outcomes will be produced when different topologies 

considered. 

Additionally, there is difference between Dijkstra and 

Kruskal algorithm in which, Dijkstra's finds a connection 

between two vertices (shortest path between two 

vertices), while Kruskal's will find a connection between 

and a number of vertices (finding the minimum spanning 

tree between all the given vertices). 

 

6. CONCLUSION 
Combinatorial optimization emerged from more 

than 50 years ago, [6][15] [12] [7]. It not only 

helps to solve real-life problems but also tends to 

give efficient algorithms, especially in working 

with the large and complex data. In other words, 

algorithms for optimization have to produce 

accurate results and take less time as much as 

possible. Thus, these discussed algorithms can be 

seen as abasic approach for further improvement 

in solving four classical combinatorial problems, 

including shortest path, spanning tree, network 

flow, and matching. 

Last but not least,it can be identified that there is 

a big room of improvement and researchin this 

area. So, further comparisons can be conducted 

experimentally to achieve better accurate results. 
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